Strecken, Pfeile und Pfeilklassen SoSe 2017: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Die Gruppe der Pfeilklassen) |
*m.g.* (Diskussion | Beiträge) (→Die Gruppe der Pfeilklassen) |
||
| Zeile 46: | Zeile 46: | ||
# Inverse Elemente: <math>\forall \overrightarrow{a} \in \overrightarrow{\mathbb{P}} \exists -\overrightarrow{a}: \overrightarrow{a} \oplus -\overrightarrow{a} = \overrightarrow{o} </math> | # Inverse Elemente: <math>\forall \overrightarrow{a} \in \overrightarrow{\mathbb{P}} \exists -\overrightarrow{a}: \overrightarrow{a} \oplus -\overrightarrow{a} = \overrightarrow{o} </math> | ||
# Kommutativität: <math>\forall \overrightarrow{a}, \overrightarrow{b} \in \overrightarrow{\mathbb{P}}: \overrightarrow{a} \oplus \overrightarrow{b} = \overrightarrow{b} \oplus \overrightarrow{a}</math>. | # Kommutativität: <math>\forall \overrightarrow{a}, \overrightarrow{b} \in \overrightarrow{\mathbb{P}}: \overrightarrow{a} \oplus \overrightarrow{b} = \overrightarrow{b} \oplus \overrightarrow{a}</math>. | ||
| + | Beweis: Übungsaufgabe | ||
<!--- hier drunter nichts eintragen ---> | <!--- hier drunter nichts eintragen ---> | ||
Version vom 4. Juni 2017, 12:48 Uhr
StreckenDefinitionDefinition: (Strecke
BemerkungIm Gegensatz zur Definition des Begriffs Strecke in der Einführung in die Geometrie lassen wir hier zu, dass die Punkte gerichtete Strecken bzw PfeileDefinition: (gerichtete Strecke
PfeilklassenDefinition: (Pfeilgleichheit)
Satz: (Pfeilgleichheit ist ÄR)
Beweis: Übungsaufgabe Definition: (Pfeilklasse)
Hinweis: Jede Pfeilklasse ist durch Angabe eines ihrer Repräsentanten eindeutig bestimmt. Ob wir mit Addition von PfeilklassenDefinition: (Addition von Pfeilklassen)
Satz: (Wohldefiniertheit der Operation
Beweis : ÜA Die Pfeilklasse
|
)
und
zwei beliebige Punkte. Unter der Strecke
.
)
und nennen
stehen in der Relation pfeilgleich zueinander, wenn
ein Parallelogramm ist. In Zeichen:

meint einen bestimmten Pfeil und
bezeichnet die Pfeilklasse, die durch
zwei Pfeilklassen. Die Addition
ist wie folgt definiert: Es seien
und
.
ist die Pfeilklasse, die durch den Pfeil
eindeutig bestimmt ist.

ist eine abelsche Gruppe:
.

