Lösung von Aufgabe 8.1: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(→Lösung) |
|||
| Zeile 2: | Zeile 2: | ||
Beweisen Sie: <math>\ gR^+ \equiv gQ^-</math> und <math>\ gR^- \equiv gQ^+ </math> | Beweisen Sie: <math>\ gR^+ \equiv gQ^-</math> und <math>\ gR^- \equiv gQ^+ </math> | ||
| − | == Lösung == | + | == Lösung --[[Benutzer:Schnirch|Schnirch]] 13:10, 14. Jul. 2010 (UTC)== |
'''Voraussetzung:''' <math>\ {gQ}^{+}</math> und <math>\ {gQ}^{-}</math> <math>R \in {gQ}^{-} </math> mit <math>R \not \in g </math> | '''Voraussetzung:''' <math>\ {gQ}^{+}</math> und <math>\ {gQ}^{-}</math> <math>R \in {gQ}^{-} </math> mit <math>R \not \in g </math> | ||
<br />'''Behauptung:''' <math>{gR}^{+} \equiv {gQ}^{-}</math> und <math>{gR}^{-} \equiv {gQ}^{+}</math>, d. h. <br\> | <br />'''Behauptung:''' <math>{gR}^{+} \equiv {gQ}^{-}</math> und <math>{gR}^{-} \equiv {gQ}^{+}</math>, d. h. <br\> | ||
Version vom 14. Juli 2010, 14:10 Uhr
Es sei
eine Ebene, die durch die Gerade
in die beiden Halbebenen
und
eingeteilt wird. Ferner sei
ein Punkt der Halbebene
, der nicht auf der Trägergeraden
liegen möge.
Beweisen Sie:
und
Lösung --Schnirch 13:10, 14. Jul. 2010 (UTC)
Voraussetzung:
und
mit
Behauptung:
und
, d. h.
1)
2)
zu 1)
| Nr. | Beweisschritt | Begründung |
|---|---|---|
| (I) |
|
nach Definition Halbebene |
| (II) |
|
nach Voraussetzung und Definition Halbebene |
| (III) |
|
Axiom v. Pasch |
| (IV) |
|
(III) und Definition Halbebene |
zu 2) analog zu 1)

