GeometrieUndUnterrichtSS2019 01: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Vorbereitungsauftrag)
(Vorbereitungsauftrag)
Zeile 3: Zeile 3:
 
Der Begriff ''Grundvorstellung'' steht für ein tragfähiges mentales Modell für einen Begriff oder ein Verfahren. Lesen Sie [https://link.springer.com/article/10.1007/BF03338785 vom Hofe (2013). „Grundvorstellungen mathematischer Inhalte als didaktisches Modell“] in ''Journal für Mathematik-Didaktik'' und eigenständig recherchierte Beiträge zum Thema ''Grundvorstellungen'' (mit Bezug zum Geometrieunterricht). Bearbeiten Sie die folgenden Aufträge.
 
Der Begriff ''Grundvorstellung'' steht für ein tragfähiges mentales Modell für einen Begriff oder ein Verfahren. Lesen Sie [https://link.springer.com/article/10.1007/BF03338785 vom Hofe (2013). „Grundvorstellungen mathematischer Inhalte als didaktisches Modell“] in ''Journal für Mathematik-Didaktik'' und eigenständig recherchierte Beiträge zum Thema ''Grundvorstellungen'' (mit Bezug zum Geometrieunterricht). Bearbeiten Sie die folgenden Aufträge.
  
# Diskutieren Sie, wie sich ''Flächeninhalte von Rechtecken'' als Grundvorstellung für die ''Multiplikation zweier positiver (rationaler) Zahlen'' interpretieren lassen.  
+
# Diskutieren Sie, wie sich ''Flächeninhalte von Rechtecken'' als (innermathematischen) Sachzusammenhang für die ''Multiplikation zweier positiver (rationaler) Zahlen'' für den Aufbau einer Grundvorstellung eignen. Berücksichtigen Sie dabei die Aspekte ''Sinnkonstituierung'',  ''Aufbau von Repräsentationen'' und ''Anwendung des Begriffs''. (Die folgenden zwei Aufgaben können dabei helfen.)
 
# Wie können Sie diese Vorstellung zur Erklärung des ''Distributivgesetz'' beim Rechnen mit positiven (rationalen) Zahlen verwenden?
 
# Wie können Sie diese Vorstellung zur Erklärung des ''Distributivgesetz'' beim Rechnen mit positiven (rationalen) Zahlen verwenden?
 
# Wie können Sie diese Vorstellung zur Erklärung der ''ersten binomischen Formel'' beim Rechnen mit positiven (rationalen) Zahlen verwenden?
 
# Wie können Sie diese Vorstellung zur Erklärung der ''ersten binomischen Formel'' beim Rechnen mit positiven (rationalen) Zahlen verwenden?

Version vom 11. April 2019, 11:07 Uhr

Inhaltsverzeichnis

Vorbereitungsauftrag

Der Begriff Grundvorstellung steht für ein tragfähiges mentales Modell für einen Begriff oder ein Verfahren. Lesen Sie vom Hofe (2013). „Grundvorstellungen mathematischer Inhalte als didaktisches Modell“ in Journal für Mathematik-Didaktik und eigenständig recherchierte Beiträge zum Thema Grundvorstellungen (mit Bezug zum Geometrieunterricht). Bearbeiten Sie die folgenden Aufträge.

  1. Diskutieren Sie, wie sich Flächeninhalte von Rechtecken als (innermathematischen) Sachzusammenhang für die Multiplikation zweier positiver (rationaler) Zahlen für den Aufbau einer Grundvorstellung eignen. Berücksichtigen Sie dabei die Aspekte Sinnkonstituierung, Aufbau von Repräsentationen und Anwendung des Begriffs. (Die folgenden zwei Aufgaben können dabei helfen.)
  2. Wie können Sie diese Vorstellung zur Erklärung des Distributivgesetz beim Rechnen mit positiven (rationalen) Zahlen verwenden?
  3. Wie können Sie diese Vorstellung zur Erklärung der ersten binomischen Formel beim Rechnen mit positiven (rationalen) Zahlen verwenden?

Dokumentation der Sitzung

Zusammenfassung und Bezug zu den Bildungsstandards

Inhaltlicher Input

Arbeitsphase

Nachbereitungsauftrag

Entwerfen Sie eine Prüfungsfrage zu dieser Sitzung. Ihre Frage sollte dabei nicht nur bloße Wissensabfrage sein, sondern auch Anwendungen, Begründungen oder Diskussionen erfordern. (Sollte Ihnen doch nur Aufgaben zur bloßen Wissensabfrage einfallen, entwerfen Sie drei Prüfungsfragen.)

  1. Entscheiden Sie zunächst, ob Sie eine Frage für eine mündliche oder eine schriftliche Prüfung entwickeln wollen; tragen Sie Ihre Entscheidung entsprechend in die Format-Spalte ein.
  2. Formulieren Sie Ihre Prüfungsfrage in der Aufgabenstellung-Spalte.
  3. Beschreiben Sie ausführlich, wie mögliche (richtige) Antworten auf Ihre Frage aussehen könnten. Tragen Sie dies entsprechend in die Erwartungshorizont-Spalte ein.
  4. Erläutern Sie kurz, warum Sie diese Aufgabe einen zentralen Aspekt der Sitzung abdeckt und welche Anforderung an Wissen/Kompetenzen die Aufgabe fordert.

Mögliche Inspiration können Sie gerne der folgenden Quelle entnehmen:

Format Aufgabenstellung Erwartungshorizont Diskussion
Beispiel Beispiel Beispiel Beispiel
Beispiel Beispiel Beispiel Beispiel
Beispiel Beispiel Beispiel Beispiel