Satz des Thales: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Kommentar zu den Umkehrungen des Thalesstzes--*m.g.* 20:43, 23. Jul. 2010 (UTC)) |
(→Satz des Thales) |
||
Zeile 47: | Zeile 47: | ||
===Satz des Thales=== | ===Satz des Thales=== | ||
Es sei k ein Kreis mit einem Durchmesser <math> \overline {AB} </math>. Jeder Peripheriewinkel von k über <math> \overline {AB} </math> ist ein rechter Winkel.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC) | Es sei k ein Kreis mit einem Durchmesser <math> \overline {AB} </math>. Jeder Peripheriewinkel von k über <math> \overline {AB} </math> ist ein rechter Winkel.--[[Benutzer:Löwenzahn|Löwenzahn]] 15:07, 23. Jul. 2010 (UTC) | ||
+ | |||
+ | Ein Versuch den Satz des Thales mit dem EP zu beweisen: | ||
+ | |||
+ | <ggb_applet width="1280" height="648" version="3.2" ggbBase64="UEsDBBQACAAIAOhL+DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VrNcts2ED43T8HhuaIJgADJGSkZWc4hM3GTqdMc2umBIiEJNUWqJGRLfqvm9y3yTF0ApP4jh5LcxokPNBfL5eL79g+M289m49S64UUp8qxjI8e1LZ7FeSKyYceeykErsJ89fdIe8nzI+0VkDfJiHMmOTRxsK/lUPH3yU7sc5bdWlGqVt4LfdmxZTLltlZOCR0k54lwa8SBKS5BH05lIRVTMX/X/4rEslwvGxotsMpW1kXicvBRlfXum3zdJhbwQNyLhhZXmccdmFDyH397yQoo4Sju25xoJ7th4YxFERK2O8kLc5ZlU6kvjA5BYVinuOACClax9pvfZ5tM4FYmIMrUZ7QcoWdatSOQIdF3sgU0uhiNwlnnMmIvzvEiu5qXkY2v2Oy9y8Mf3HewvfxA8NzdLBGHHoys/sFSCy+CLR9dXfHjoq0v61fzmiksJVJZWNONLlIeFSNZuXpTneboUTXKRyV40kdNCxwGpRFdyrt4GyBVqk91smPJKhoGnEY+v+/nsyiBHjOk384l+RDvUH/byNC+sQnFCQaG69s1V6yhPF1qu1nG1RmVDGV2soxBrDX3tm6vWSkVmXKt2jupdI7d+jSgtJQDjKnwXm0+jPod4sK1pJuTL+gbi5rraKjIP/DId9yFvViNnYROdymb7bCPm2te8yHhqAisDbqf5tLRuVASbd2lHEh6LMdyahQqSSNH1GzhgpAkfFrx23KSdAUyvuqvBuyFun9VOKB9K8DWWUD5gP1Lt5SqSd1bCS+vNCIKzVNkuIdPUjpNIgoIqHDzlYw55JnV46OhawHRpL2pKrutDXQmq9SXgsLwzVHRQRelkFIHEqfaSRnOoFqu70/Yu82R9z1EG2OkNQc5OlAHFzoTzpCqQsgppawImdYKsQK8RK60ZJKXD3LV/4NO8Y7dch0JS3xlj+hmTXKqWaD9IxbyB6B6wzn8MsBAoe6tgoRosL2gGVpyPx1GWWFk0hhf3RBGnXGMkVFOxIlcFmBUhCFQ+VM/8cfmzdf5nhdFU1kqxMVyZ22IBIl/EC5Rje73oyBHkdsbLUldGuVoDj6HKPZyob/INehfPbsCzvCgta+ZWHM5d80LrrpbMkOZGraFKdIdWSIKYKMTM6tb63VqrC723heFJTBnckcpw1wPxroTpUqUBCWP8+zszeyhN2YRAi8VAxPtj4CVsfXcEnG+xHu1nXaG44Cv67klf5pcia2c5Yo5nqhFxfErY2nqDwNkgRoxhQouF3E/Mi0xCtwNMNtiJDTsRXNT0Vu96habufprWS2T3oBLJPM2BuvTN5QQsICfw6sLGjqlrr/UON2HbhKnXBKbeQTAhbOY4ff1euglzAhIGLszWlPmeGzKNOQzJYYAp8hFxPcwC5fHhDFTdY4OD3tcKS38/FWVlrQa7/4hqC3VCfxVXotH2HAxdPITjjUcwDV0DdosRJwxIAIrYJcjzgxNVGQ12qmJiUVUgjrZH42vOJ+pM8ip7U0RZqc6zRmdl5G7EeNcw3ttiPGnGePKIGG8xx11PJU154DB/Ne1qyh0X4dBFFDEaeq4fPh7Kd4wOvbo5bfLNG4wO/DGRfe/o0CKeE0JWUxywQH2zIA8+OuhvD7uHuq4ZG7YT8ss/+xnSB+QFuqCtngdMpjUyMJ8SRAIIYswQYQgdxlD96WObI7SXo1eDQcmlPi1VQwTdySBqgH5UxMuO59WfYNI0v/2VD1I+0zh/a7bsImXREDUpl9ukvGtEyrttUkLmM+r70GQIoaQ+KhyTNoiSA0hpUTNmtLzTssLc07OyaFqale1p5cv7Rqy832QFOdSHQs8Iho7gBSELjmEFuYenSgv5mhV0WlLokamya37nWzRcNJnfL36c+R0Rx0MEAgdmRwpR5NYDPKUhhUECuwyE/lHz+7cx8LwJA89/HAag6WMGaUsIwz7yFeL1GYpgF0EDBB48FITHULCrMp2vVaaL7cr0oVFl+vCw/eKYyoSrT5zktJXpIdrF8zVSutukfGxEyseHmqxO0C48E+fs+yJl78eG7aFq0OzoOXhEpxE4TJLNjzgqi7CDyY6zJw6cMKAeRYSiAIKMnuqr5n9w+Lx/cNsxTn9qlImf7s1E8n+dcVrUMEtOfMh5iPp4ed84/bkRK5/vbVrs+GzErnfQOG3qIw5Py4rfeJ4+W/2/Z/03GtXfqDz9F1BLBwjB02r+ZAYAANUiAABQSwECFAAUAAgACADoS/g8wdNq/mQGAADVIgAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAJ4GAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> | ||
+ | |||
+ | Vor: Dreieck ABC, A,B und C element von k, Kreis K<br /> | ||
+ | Beh: y= 90<br /> | ||
+ | |||
+ | 1) Konstruieren eine Parallele zu AB durch C (Nach dem EP)<br /> | ||
+ | 2)Der Winkel < ACE ist Kongruent zu alpha (Wechselwinkelsatz)<br /> | ||
+ | 3)Delta ist kongruent zu Betha (Wechselwinkelsatz)<br /> | ||
+ | 4)Winkel < ACM ist Kongruent zu alpha (Basiswinkelsatz)<br /> | ||
+ | 5) Winkel < MCB ist kongruent zu Betha (Basiswinkelsatz)<br /> | ||
+ | 6) <ACE+<ACM+<MCB+<BCD= 180<br /> | ||
+ | 7)alpha+alpha+betha+Betha= 180 (einsetzten der Kongruenzen)<br /> | ||
+ | 8) 2*(alpha+betha)= 180 (rechenen in R)<br /> | ||
+ | 9) alpha+betha=90 (rechenen in R)<br /> | ||
+ | 10) Y=90<br /> | ||
+ | q.e.d<br /> | ||
==Umkehrung 1: Satz des Thales== | ==Umkehrung 1: Satz des Thales== |
Version vom 24. Juli 2010, 09:11 Uhr
Inhaltsverzeichnis |
Ein wenig Didaktik
Hier geben Ihnen die Didaktikspezialisten Tipps zum Satz des Thales
Satzfindung
Induktive Satzfindung
--Gubbel 12:10, 21. Jul. 2010 (UTC)
Funktionale Betrachtung
Variante 1
--"chris"07 21:47, 15. Jul. 2010 (UTC)
Variante 2
--"chris"07 21:12, 14. Jul. 2010 (UTC)
Variante 3
--"chris"07 21:12, 14. Jul. 2010 (UTC)
Beweisfindung
ikonisches/halbikonisches Beweisen
--"chris"07 17:07, 15. Jul. 2010 (UTC)
Beweisen am Beispiel
induktive Satzfindung der allgemeinen Umkehrung
Nimmt man statt eines Rechtecks ein Parallelogramm, so lässt sich die Umkehrung des Periphriewinkelsatzes finden:
Die Scheitel kongruente Winkel, deren Schenkel die Eckpunkte einer Strecke AB enthalten, liegen auf einem Kreis, der AB als Sehne hat.--Tja??? 09:39, 23. Jul. 2010 (UTC)
Beweisführung
Satz des Thales
Satz des Thales
Es sei k ein Kreis mit einem Durchmesser . Jeder Peripheriewinkel von k über ist ein rechter Winkel.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)
Ein Versuch den Satz des Thales mit dem EP zu beweisen:
Vor: Dreieck ABC, A,B und C element von k, Kreis K
Beh: y= 90
1) Konstruieren eine Parallele zu AB durch C (Nach dem EP)
2)Der Winkel < ACE ist Kongruent zu alpha (Wechselwinkelsatz)
3)Delta ist kongruent zu Betha (Wechselwinkelsatz)
4)Winkel < ACM ist Kongruent zu alpha (Basiswinkelsatz)
5) Winkel < MCB ist kongruent zu Betha (Basiswinkelsatz)
6) <ACE+<ACM+<MCB+<BCD= 180
7)alpha+alpha+betha+Betha= 180 (einsetzten der Kongruenzen)
8) 2*(alpha+betha)= 180 (rechenen in R)
9) alpha+betha=90 (rechenen in R)
10) Y=90
q.e.d
Umkehrung 1: Satz des Thales
Umkehrung Satz des Thales
Ist ein Dreieck mit einem rechten WInkel bei , so liegt der Punkt auf dem Thaleskreis, wobei einen Durchmesser des Kreises bildet.--Löwenzahn 15:07, 23. Jul. 2010 (UTC)
Umkehrung 2: Satz des Thales
Umkehrung Satz des Thales
Ist ein Peripheriewinkel über einer Sehne eines Kreises ein rechter Winkel, so ist die Sehne s ein Durchmesser des Kreises .--Löwenzahn 15:07, 23. Jul. 2010 (UTC)
Kommentar zu den Umkehrungen des Thalesstzes--*m.g.* 20:43, 23. Jul. 2010 (UTC)
Es sei ein Winkel und ein Kreis. Der Satz des Thales hat zwei Voraussetzungen:
- ist Peripheriewinkel von
- über einem Durchmesser von .
Die Behauptung des Thalessatzes: ist ein rechter Winkel.
Aus Gründen der Übersicht benenne ich die Voraussetzungen V1 und V2. Für die Behauptung schreibe ich B.
Satz des Thales:
Aus V1 und V2 folgt B.
Die eigentliche Umkehrung:
Aus B folgt V1 und V2.
Gemischte Umkehrung 1:
Aus B und V1 folgt V2.
Gemischte Umkehrung 2:
Aus B und V2 folgt V1.