Übung Aufgaben 11 (SoSe 22): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 12.4)
Zeile 14: Zeile 14:
  
  
==Aufgabe 12.4==
+
==Aufgabe 11.4==
 
#Gegeben sei ein Winkel <math>\angle ABC</math> und ein Punkt ''P'' im Inneren des Winkels der nicht auf einem der Schenkel des Winkels <math>\angle ABC</math> liegt. Konstruieren Sie eine Strecke <math>\overline{DE}</math> deren Endpunkte ''D'' und ''E'' jeweils auf einem der beiden Schenkel des Winkels <math>\angle ABC</math> liegen und ''P'' Mittelpunkt der Strecke <math>\overline{DE}</math> ist.  
 
#Gegeben sei ein Winkel <math>\angle ABC</math> und ein Punkt ''P'' im Inneren des Winkels der nicht auf einem der Schenkel des Winkels <math>\angle ABC</math> liegt. Konstruieren Sie eine Strecke <math>\overline{DE}</math> deren Endpunkte ''D'' und ''E'' jeweils auf einem der beiden Schenkel des Winkels <math>\angle ABC</math> liegen und ''P'' Mittelpunkt der Strecke <math>\overline{DE}</math> ist.  
 
#Beweisen Sie, dass Ihre Konstruktion richtig ist.
 
#Beweisen Sie, dass Ihre Konstruktion richtig ist.

Version vom 4. Juli 2022, 10:58 Uhr

Inhaltsverzeichnis

Aufgabe 11.1

Beweisen Sie Satz IX.4: Bei einer Punktspiegelung werden Geraden stets auf parallele Bildgeraden abgebildet.
Lösung von Aufgabe 11.1P (SoSe_22)

Aufgabe 11.2

Beweisen Sie Satz IX.9:
Gegeben seien zwei zueinander parallele Spiegelgeraden a und b. Wir betrachten die Verkettung S_{a}\circ S_{b} . Jeder Punkt P hat dabei zu seinem Bildpunkt P''=S_{a}\circ S_{b}(P) einen Abstand der doppelt so groß ist wie der Abstand der beiden Spiegelgeraden.
Lösung von Aufgabe 11.2P (SoSe_22)

Aufgabe 11.3

Welche wichtige Erkenntnis ergibt sich aus Satz IX.9 für die absolute und relative Lage der beiden Spiegelgeraden?
Lösung von Aufgabe 11.3P (SoSe_22)


Aufgabe 11.4

  1. Gegeben sei ein Winkel \angle ABC und ein Punkt P im Inneren des Winkels der nicht auf einem der Schenkel des Winkels \angle ABC liegt. Konstruieren Sie eine Strecke \overline{DE} deren Endpunkte D und E jeweils auf einem der beiden Schenkel des Winkels \angle ABC liegen und P Mittelpunkt der Strecke \overline{DE} ist.
  2. Beweisen Sie, dass Ihre Konstruktion richtig ist.

Lösung von Aufgabe 11.4P (SoSe_22)