Mittelsenkrechte und Winkelhalbierende (WS10/11): Unterschied zwischen den Versionen
(→Beweis von Satz VI. 1 \frac{1}{2}) |
TimoRR (Diskussion | Beiträge) (→Beweis der Existenzbehauptung:) |
||
Zeile 34: | Zeile 34: | ||
| (i) | | (i) | ||
| <math>\exist M \in\overline{AB}: |AM| = |MB|</math> | | <math>\exist M \in\overline{AB}: |AM| = |MB|</math> | ||
− | | | + | | Existenz und Eindeutigkeit des Mittelpunktes |
|- | |- | ||
| (ii) | | (ii) | ||
| <math>\exist P \in AB,Q^+ : |\angle PMB | = 90</math> | | <math>\exist P \in AB,Q^+ : |\angle PMB | = 90</math> | ||
− | | | + | | Winkelkonstruktionsaxiom |
|- | |- | ||
| (iii) | | (iii) | ||
| <math>\ PM</math> ist Mittelsenkrechte von <math>\overline{AB}</math> | | <math>\ PM</math> ist Mittelsenkrechte von <math>\overline{AB}</math> | ||
− | | | + | | (i), (ii) |
|} | |} | ||
− | + | --[[Benutzer:TimoRR|TimoRR]] 11:27, 6. Jan. 2011 (UTC) | |
+ | <br /> | ||
Bemerkung: Ihnen fällt sicherlich auf, dass wir nach dem Beweis von Satz V.5 die Existenz der Mittelsenkrechten von <math>\overline{AB}</math> gar nicht so ausführlich hätten führen müssen. Der Beweis von Satz V.5 steht momentan jedoch noch als Übungsaufgabe aus. | Bemerkung: Ihnen fällt sicherlich auf, dass wir nach dem Beweis von Satz V.5 die Existenz der Mittelsenkrechten von <math>\overline{AB}</math> gar nicht so ausführlich hätten führen müssen. Der Beweis von Satz V.5 steht momentan jedoch noch als Übungsaufgabe aus. | ||
Aktuelle Version vom 6. Januar 2011, 12:27 Uhr
Inhaltsverzeichnis |
Mittelsenkrechte und Winkelhalbierende
Mittelsenkrechte
Eine Mittelsenkrechte ist das, was ihre Bezeichnung ausdrückt: eine Gerade, die eine Strecke halbiert und senkrecht auf ihr steht.
Definition VI.1: (Mittelsenkrechte)
- Es sei eine Gerade und eine Strecke, die durch im Punkt geschnitten wird. ist die Mittelsenkrechte von , wenn
Satz VI.1: (Existenz und Eindeutigkeit der Mittelsenkrechten)
- Jede Strecke hat in jeder Ebene, zu der die Strecke vollständig gehört, genau eine Mittelsenkrechte.
Beweis von Satz VI.1
Es sei eine Strecke, die vollständig zur Ebene gehören möge.
Behauptungen:
- Es gibt in eine Gerade , die die Mittelsenkrechte von ist.
- Es gibt in nicht mehr als eine Gerade , die die Mittelsenkrechte von ist.
Beweis der Existenzbehauptung:
Aus Gründen der effizienten Bezeichnung führen wir den Punkt ein, der zur Ebene aber nicht zur Geraden gehören möge.
Nr. | Beweisschritt | Begründung |
---|---|---|
(i) | Existenz und Eindeutigkeit des Mittelpunktes | |
(ii) | Winkelkonstruktionsaxiom | |
(iii) | ist Mittelsenkrechte von | (i), (ii) |
--TimoRR 11:27, 6. Jan. 2011 (UTC)
Bemerkung: Ihnen fällt sicherlich auf, dass wir nach dem Beweis von Satz V.5 die Existenz der Mittelsenkrechten von gar nicht so ausführlich hätten führen müssen. Der Beweis von Satz V.5 steht momentan jedoch noch als Übungsaufgabe aus.
Beweis der Eindeutigkeitsbehauptung
Die Eindeutigkeit des Mittelpunktes einer Strecke wurde bereits bewiesen (Satz III.1). Die Eindeutigkeit der Senkrechten in einem Punkt einer Geraden zu dieser Geraden wird/wurde mit Satz V.5 bewiesen.
Winkelhalbierende
Ein Winkel ist ein Paar von Halbgeraden, die einen gemeinsamen Anfangspunkt haben. Eine Winkelhalbierende teilt einen Winkel in zwei Teilwinkel, die jeweils dieselbe Größe haben. Die Teilwinkel werden dadurch gebildet, dass jeder Schenkel des ursprünglichen Winkels jeweils mit der Winkelhalbierenden zu einem neuen Winkel zusammengefasst wird. Es ist also sinnvoll, die Winkelhalbierende eines Winkels als eine besondere Halbgerade zu definieren.
Definition VI.2 (Winkelhalbierende)
Es sei ASB ein Winkel und SP+ ein Strahl, der vollständig im Inneren vom Winkel ASB liegt. Der Strahl SP+ heißt Winkelhalbierende des Winkels ASB, falls die Winkel ASP und PSB dieselbe Größe haben.--Engel82 10:02, 15. Dez. 2010 (UTC)
- Es seien , und drei Halbgeraden ein und derselben Ebene mit dem gemeinsamen Anfangspunkt . Die Halbgerade ist die Winkelhalbierende des Winkels , wenn im Inneren von liegt und die beiden Winkel und dieselbe Größe haben. --Halikarnaz 21:10, 15. Dez. 2010 (UTC)
Satz VI.
- Es sei die Winkelhalbierende des Winkels . Dann gilt .
Beweis von Satz VI.
Übungsaufgabe
Satz VI.2 (Existenz und Eindeutigkeit der Winkelhalbierenden)
siehe Auftrag der Woche 10.
Beweis von Satz VI.2
Tutorium_10