Projektionen und Strahlensätze 2010: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (→Definition II.05: (Parallelprojektion der Ebene auf eine Gerade)) |
*m.g.* (Diskussion | Beiträge) (→Definition II.05: (Parallelprojektion der Ebene auf eine Gerade)) |
||
Zeile 36: | Zeile 36: | ||
::In Zeichen: <math>\ PP_{\mathcal{R}, b}</math> | ::In Zeichen: <math>\ PP_{\mathcal{R}, b}</math> | ||
+ | |||
[[Category:Elementargeometrie]] | [[Category:Elementargeometrie]] |
Version vom 18. Januar 2011, 16:07 Uhr
Zentralprojektionen
Wie kommt Lara Croft auf den Bildschirm?
Begriff der Zentralprojektion
Definition II.01: (Zentralprojektion des Raumes auf eine Ebene)
- Es sei eine Ebene des Raumes und ein Punkt aus der nicht zu gehört.
Die Zentralprojektion ist eine Abbildung von auf die Ebene mit:
- Die Ebene heißt Bildebene bei der Zentralprojektion und der Punkt Zentralpunkt der .
- Es sei eine Ebene des Raumes und ein Punkt aus der nicht zu gehört.
Definition II.02: (Zentralprojektion der Ebene auf eine Gerade)
- Versuchen Sie es selbst.
- Versuchen Sie es selbst.
- Es sei eine Gerade der Ebene und ein Punkt aus der nicht zu gehört.
Die Zentralprojektion ist eine Abbildung von auf die Gerade mit:
- Die Gerade heißt Bildgerade bei der Zentralprojektion und der Punkt Zentralpunkt der .
--Tja??? 10:47, 13. Jan. 2011 (UTC)
- Es sei eine Gerade der Ebene und ein Punkt aus der nicht zu gehört.
korrekt, --*m.g.* 15:54, 13. Jan. 2011 (UTC) Wie wäre es damit:
Definition II.03: (Richtung)
- Eine Richtung ist eine Äquivalenzklasse nach der Relation "parallel" auf der Menge aller Geraden.
Definition II.04: (Parallelprojektion des Raumes auf eine Ebene)
- Es sei eine Ebene des Raumes und eine Richtung mit .
- Unter der Parallelprojektion des Raumes auf die Bildebene mit der Projektionsrichtung versteht man die Abbildung von auf , die jedem Punkt derart auf sein Bild abbildet, dass gilt:
- mit --*m.g.* 14:50, 18. Jan. 2011 (UTC)
alte Version von Tja in der Diskussion.
Definition II.05: (Parallelprojektion der Ebene auf eine Gerade)
- Es sei eine Gerade der Ebene und eine Richtung in mit .
- Unter der Parallelprojektion der Ebene auf die Bildgerade versteht man die Abbildung, die jeden Punkt derart auf sein Bild abbildet, dass gilt:
- mit .
- In Zeichen: