Projektionen und Strahlensätze 2010: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Definition II.05: (Parallelprojektion der Ebene auf eine Gerade))
(Definition II.05: (Parallelprojektion der Ebene auf eine Gerade))
Zeile 38: Zeile 38:
  
 
<ggb_applet width="892" height="480"  version="3.2" ggbBase64="UEsDBBQACAAIAFOCMj4AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vjbbts4EH3efoUgFH2zrJttGbVTNMlLgOw2abLFYrHAgpJomY0kqiSV2Fns3+yf9Mc6vMi27KSxWhfFRi8Sh8PhzJmZI0qTN4sit24x44SWU9tzXNvCZUJTUmZTuxazXmS/OXoxyTDNcMyQNaOsQGJqB45vS3lNjl78MuFzemehXKl8IPhuas9QzrFt8YphlPI5xqIlR/WC5ASx5bv4I04EX09oI2dlVcMugtUgS4r0nPBm2FcbVjkRp+SWpJhZOU2m9nAArsPTB8wESVA+tUNXS/yp7W9NgiiQs3PKyD0thVRfG5+BxLI4ucewMpSySV8FOsF1kpOUoFIGo/wAJcu6I6mYT+1o7INJTLI5+BqOIm0toZSlV0sucGEt/sSMglFvIIFe6lGgRxz8gg0HrpraHCkz+PYKCwFp4RZa4DVgGSNpa3DGj2m+FlWUlOIEVaJmKqeBEV2JpdwA9mLS4bdllmMjgyiSOU5uYrq4UiB4gTZ9vazUEuVQnJ3QnDKLSXgHoGDusb4rHenpSstVOq7SMDak0dW8J+HLzD3Wd6WVk1K7ZiL3mqg9t9mGcEsKJIxQiqvgcxRjSK1t1SUR580ASuDGhOrpBb/VRQw9sFkEK5veoWxO+lvlM7nBrMS5LpISclvTmlu3shj1XsqRFCekgKGeMJAgma7fwQEtTXHGcOO47iANmJp1NwtxSzzpN05IHzj4mgigAohHyFhkpwroEvmUIiElsg1yXGDoEaHqQZXTCpe39ooQqOrtbeA2QgOFB6tD1RHKqzkCSdMAOVpCr28GpAz+StN2mKgEuFQM0HKVNCATUmGcGn4TpoqtCkyqnthwSYHErYVcJ+twKR+G8HCvVysl3UCy9dXGgcmuRuUJfI6fCz6h4w7dzWug0AqcMOqGVkKLApWpVaIC9j2HZlcQEfkKsJArS8pCnkROg1KLZiLWpoyBHeAlb6xgje02lYg5dGyJOTToaB1zfyc5+hVkjKzp4RCpeTebcSwkloNQYdcLHs5csI19z3eioYHbC1tZGCrwoWajMBivr9E2lX4lfvyp1DpcExop4G2bEGG8gHeJrB7l2THJ0wwzBJ5mXbrgZLcLWkD/X5qgByyh8jBw4KRwMJI4fSbw+I4ftapTM2roBB0Z9UmOONEccbrLEX97XVgCtB/tE7+J2zsAUbjfQBORq2nC348loDa9cetqKEMzdA8OnlEw8DfT8zhL7ETfgSbe44p9/o8D6Ahwl2f2C0Y/4hupwRlJ5qIud/ljAR8PXH6YNKhe44WAQoSJqf3qU03F65d/QZ3O4az8z/t/X2qRMtNOsYB1dtvId/fX/vnb6S7Cz9E1/kPLtj47OGZk1nhjPkHsBmGTYS4QExeyYyyZZs8JDQVFLQral2wungDjkLX8I4lYc4svCfmg1HKhqcUQSYtcUAdqQXsQy5O88mMLswN1jB03iPZhiz3I4vFsnJUCPqEAhq2UIJOSnYRcvEIV5a+/npat8jdLvqUJhqECXt5ifevM6T1P121vuF9mAtcZDAYjb8XaI132cADxxm7zXvWccRQMv/8gcvkcuMF3RsMHTiFAGd7wwFxx+ThXJB24InlWXOEDV7jhTyOLWOck2cnIZXeyuPzZZBHo0g33S00EXOFF8oNcnQ+80cgfr1rB604V/c1/ROq3qPkvfPQFUEsHCJMFmxDpBAAASRYAAFBLAQIUABQACAAIAFOCMj6TBZsQ6QQAAEkWAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAIwUAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
<ggb_applet width="892" height="480"  version="3.2" ggbBase64="UEsDBBQACAAIAFOCMj4AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vjbbts4EH3efoUgFH2zrJttGbVTNMlLgOw2abLFYrHAgpJomY0kqiSV2Fns3+yf9Mc6vMi27KSxWhfFRi8Sh8PhzJmZI0qTN4sit24x44SWU9tzXNvCZUJTUmZTuxazXmS/OXoxyTDNcMyQNaOsQGJqB45vS3lNjl78MuFzemehXKl8IPhuas9QzrFt8YphlPI5xqIlR/WC5ASx5bv4I04EX09oI2dlVcMugtUgS4r0nPBm2FcbVjkRp+SWpJhZOU2m9nAArsPTB8wESVA+tUNXS/yp7W9NgiiQs3PKyD0thVRfG5+BxLI4ucewMpSySV8FOsF1kpOUoFIGo/wAJcu6I6mYT+1o7INJTLI5+BqOIm0toZSlV0sucGEt/sSMglFvIIFe6lGgRxz8gg0HrpraHCkz+PYKCwFp4RZa4DVgGSNpa3DGj2m+FlWUlOIEVaJmKqeBEV2JpdwA9mLS4bdllmMjgyiSOU5uYrq4UiB4gTZ9vazUEuVQnJ3QnDKLSXgHoGDusb4rHenpSstVOq7SMDak0dW8J+HLzD3Wd6WVk1K7ZiL3mqg9t9mGcEsKJIxQiqvgcxRjSK1t1SUR580ASuDGhOrpBb/VRQw9sFkEK5veoWxO+lvlM7nBrMS5LpISclvTmlu3shj1XsqRFCekgKGeMJAgma7fwQEtTXHGcOO47iANmJp1NwtxSzzpN05IHzj4mgigAohHyFhkpwroEvmUIiElsg1yXGDoEaHqQZXTCpe39ooQqOrtbeA2QgOFB6tD1RHKqzkCSdMAOVpCr28GpAz+StN2mKgEuFQM0HKVNCATUmGcGn4TpoqtCkyqnthwSYHErYVcJ+twKR+G8HCvVysl3UCy9dXGgcmuRuUJfI6fCz6h4w7dzWug0AqcMOqGVkKLApWpVaIC9j2HZlcQEfkKsJArS8pCnkROg1KLZiLWpoyBHeAlb6xgje02lYg5dGyJOTToaB1zfyc5+hVkjKzp4RCpeTebcSwkloNQYdcLHs5csI19z3eioYHbC1tZGCrwoWajMBivr9E2lX4lfvyp1DpcExop4G2bEGG8gHeJrB7l2THJ0wwzBJ5mXbrgZLcLWkD/X5qgByyh8jBw4KRwMJI4fSbw+I4ftapTM2roBB0Z9UmOONEccbrLEX97XVgCtB/tE7+J2zsAUbjfQBORq2nC348loDa9cetqKEMzdA8OnlEw8DfT8zhL7ETfgSbe44p9/o8D6Ahwl2f2C0Y/4hupwRlJ5qIud/ljAR8PXH6YNKhe44WAQoSJqf3qU03F65d/QZ3O4az8z/t/X2qRMtNOsYB1dtvId/fX/vnb6S7Cz9E1/kPLtj47OGZk1nhjPkHsBmGTYS4QExeyYyyZZs8JDQVFLQral2wungDjkLX8I4lYc4svCfmg1HKhqcUQSYtcUAdqQXsQy5O88mMLswN1jB03iPZhiz3I4vFsnJUCPqEAhq2UIJOSnYRcvEIV5a+/npat8jdLvqUJhqECXt5ifevM6T1P121vuF9mAtcZDAYjb8XaI132cADxxm7zXvWccRQMv/8gcvkcuMF3RsMHTiFAGd7wwFxx+ThXJB24InlWXOEDV7jhTyOLWOck2cnIZXeyuPzZZBHo0g33S00EXOFF8oNcnQ+80cgfr1rB604V/c1/ROq3qPkvfPQFUEsHCJMFmxDpBAAASRYAAFBLAQIUABQACAAIAFOCMj6TBZsQ6QQAAEkWAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAIwUAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
+
====Satz II.01: (Fixpunkte bei Parallelprojektionen) ====
 +
::Es sei <math>\ PP_{\mathcal{R}, b} eine Parallelprojektion der Ebene auf eine Gerade. Jeder Punkt der Bildgeraden <math>\ b</math> ist bezüglich <math>\ PP_{\mathcal{R}, b} ein Fixpunkt.
 
[[Category:Elementargeometrie]]
 
[[Category:Elementargeometrie]]

Version vom 18. Januar 2011, 16:23 Uhr

Inhaltsverzeichnis

Zentralprojektionen

Wie kommt Lara Croft auf den Bildschirm?

Zentralperspektive zeichnen.png 358durer.jpg

Begriff der Zentralprojektion

Definition II.01: (Zentralprojektion des Raumes auf eine Ebene)

Es sei \ \beta eine Ebene des Raumes \mathfrak{R} und \ Z ein Punkt aus \mathfrak{R} der nicht zu \ \beta gehört.
Die Zentralprojektion \ ZP_{Z,\beta} ist eine Abbildung von \mathfrak{R}\setminus{Z} auf die Ebene \ \beta mit:
\forall P \in \mathfrak{R}\setminus{Z}: ZP_{Z,\beta}(P)=ZP \cap \beta
Die Ebene \ \beta heißt Bildebene bei der Zentralprojektion \ ZP_{Z,\beta} und der Punkt \ Z Zentralpunkt der \ ZP_{Z,\beta}.

Definition II.02: (Zentralprojektion der Ebene auf eine Gerade)

Versuchen Sie es selbst.
Es sei \ g eine Gerade der Ebene  \beta und \ Z ein Punkt aus  \beta der nicht zu \ g gehört.
Die Zentralprojektion \ ZP_{Z,g} ist eine Abbildung von \beta\setminus{Z} auf die Gerade \ g mit:
\forall P \in \beta\setminus{Z}: ZP_{Z,g}(P)=ZP \cap g
Die Gerade \ g heißt Bildgerade bei der Zentralprojektion \ ZP_{Z,g} und der Punkt \ Z Zentralpunkt der \ ZP_{Z,g}.
--Tja??? 10:47, 13. Jan. 2011 (UTC)

korrekt, --*m.g.* 15:54, 13. Jan. 2011 (UTC) Wie wäre es damit:

Definition II.03: (Richtung)

Eine Richtung ist eine Äquivalenzklasse nach der Relation "parallel" auf der Menge aller Geraden.

Definition II.04: (Parallelprojektion des Raumes auf eine Ebene)

Es sei \ \beta eine Ebene des Raumes \mathfrak{R} und \mathcal{R} eine Richtung mit \neg \exist g: g \subset \mathcal{R} \and g \subset \beta.
Unter der Parallelprojektion des Raumes \mathfrak{R} auf die Bildebene \ \beta mit der Projektionsrichtung \mathcal{R} versteht man die Abbildung von \mathfrak{R} auf \ \beta, die jedem Punkt \ P \in \mathfrak{R} derart auf sein Bild \ P' abbildet, dass gilt:
\left\{ P' \right\}=g \cap \beta mit g \in \mathcal{R} \and P \in g--*m.g.* 14:50, 18. Jan. 2011 (UTC)

alte Version von Tja in der Diskussion.

Definition II.05: (Parallelprojektion der Ebene auf eine Gerade)

Es sei \ b eine Gerade der Ebene \mathfrak{E} und \mathcal{R} eine Richtung in \mathfrak{E} mit b \not\in \mathcal{R}.
Unter der Parallelprojektion der Ebene \mathfrak{E} auf die Bildgerade \ b versteht man die Abbildung, die jeden Punkt \ P \in \mathfrak{E} derart auf sein Bild \ P' abbildet, dass gilt:
\left\{ P' \right\}= g \cap b mit g \in \mathcal{R} \and P \in g.
In Zeichen: \ PP_{\mathcal{R}, b}

Satz II.01: (Fixpunkte bei Parallelprojektionen)

Es sei \ PP_{\mathcal{R}, b} eine Parallelprojektion der Ebene auf eine Gerade. Jeder Punkt der Bildgeraden <math>\ b ist bezüglich \ PP_{\mathcal{R}, b} ein Fixpunkt.
[[Category:Elementargeometrie]]