Definitionen in der Mathematik SoSe 11: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Entwicklung einer "neuen" Definition)
(Entwicklung einer "neuen" Definition)
Zeile 14: Zeile 14:
 
Im Folgenden wollen wir versuchen, den (ihnen vermutlich wenig geläufigen) Begriff ''Ellipse'' zu definieren. Konstruktiv lässt sich eine Ellipse mit Hilfe der sogenannten Gärtnerkonstruktion, wie im folgenden Video, erzeugen. <br />
 
Im Folgenden wollen wir versuchen, den (ihnen vermutlich wenig geläufigen) Begriff ''Ellipse'' zu definieren. Konstruktiv lässt sich eine Ellipse mit Hilfe der sogenannten Gärtnerkonstruktion, wie im folgenden Video, erzeugen. <br />
 
{{#ev:youtube|PQjeTmY0cdQ&NR=1}}
 
{{#ev:youtube|PQjeTmY0cdQ&NR=1}}
 
+
Bemerkung zu obigem Video: Das geht natürlich noch schöner. Ansporn für Sie?
 
In einer ersten intuitiven Definition können wir also sagen:<br />
 
In einer ersten intuitiven Definition können wir also sagen:<br />
 
Eine Ellipse ist... <br />
 
Eine Ellipse ist... <br />

Version vom 8. April 2011, 05:54 Uhr

Erkenntnisse aus dem einführenden Beispiel

Wir haben im einführenden Beispiel festgestellt, dass Eratosthenes zur Umfangsbestimmung der Erde z. B. den Wechselwinkelsatz benutzte. Um einen mathematischen Satz verstehen oder auch beweisen zu können müssen die Begriffe und ihre Bedeutung exakt bestimmt, d. h. definiert werden.
Um einen Begriff definieren zu können braucht man weitere Begriffe, mit denen man den neu zu definierten Begriff um- bzw. beschreibt. Auch diese weiteren Begriffe müssen aber im Vorfeld natürlich festgelegt, also auch definiert werden. Dies lässt sich dann endlos so weiterführen und man käme aus der Endlosschleife des Begriffedefinierens nicht heraus.
Deshalb hat man in der Mathematik möglichst wenige grundlegende Begriffe, so genannte Grundbegriffe eingeführt, die nicht weiter bestimmt werden müssen (in der Geometrie z. B. die Begriffe: Punkte, Geraden, Ebenen, Abstand ...).
Man legt nur, mit Hilfe der so genannten Axiome, die Beziehungen zwischen den Grundbegriffen fest.

Was ist eine Definition?

  • Eine Definition ist in der Mathematik eine Begriffsbestimmung, die nur aus Grundbegriffen oder bereits definierten Begriffen besteht.
  • Eine Definition ist nicht beweisbar und damit auch nicht wahr oder falsch sondern höchstens sinnvoll oder nicht sinnvoll.
    Anmerkung: Sie können z. B. eine Raute auf verschiedene Arten definieren. Alle Definitionen sollten aber immer die uns bekannte Raute beschreiben und nicht plötzlich eine andere Figur (Fünfeck, Trapez etc.). Das wäre dann natürlich schon falsch! Beispiele für in diesem Sinne falsche Definitionen finden Sie in den Übungen 1.
  • Eine Definition sollte so wenig wie möglich und so viel wie nötig beinhalten.
    Anmerkung: Dabei schwingt immer eine gewisse Unschärfe mit, die sich didaktisch begründen lässt:
    Bsp. Definition Rechteck:
    Ein Rechteck ist ein Viereck mit drei rechten Innenwinkel.
    Diese Definition ist so knapp wie möglich gehalten. Insbesondere genügt es die Eigenschaft: "besitzt drei rechte Innenwinkel" zu beschreiben, da sich der vierte rechte Innenwinkel zwangsläufig ergibt. In der Regel wird man hier aber ein Rechteck als Viereck mit vier rechten Innenwinkel definieren, da diese Definition insbesondere für Schülerinnen und Schüler einsichtiger und griffiger ist.

Definitionen lassen sich auf verschiedene Arten und auf verschiedenen Niveaustufen formulieren. Das nachfolgende Skript gibt hierzu nähere und ausführliche Informationen:
* Definitionen

Entwicklung einer "neuen" Definition

Im Folgenden wollen wir versuchen, den (ihnen vermutlich wenig geläufigen) Begriff Ellipse zu definieren. Konstruktiv lässt sich eine Ellipse mit Hilfe der sogenannten Gärtnerkonstruktion, wie im folgenden Video, erzeugen.

EmbedVideo erhielt die unbrauchbare ID „PQjeTmY0cdQ&NR=1“ für „youtube“.

Bemerkung zu obigem Video: Das geht natürlich noch schöner. Ansporn für Sie? In einer ersten intuitiven Definition können wir also sagen:
Eine Ellipse ist...
Aufgaben:

  1. Experimentieren Sie nun mit dem Applet und machen Sie sich dabei die mathematischen Zusammenhänge klar (Tipp: Bewegen Sie den Punkt P und beobachten Sie die Strecken a und b).
    Welche Zusammenhänge entdecken Sie?

  2. Versuchen Sie nun aus den Erkenntnissen eine formale Definition des Begriffs
    Ellipse zu entwickeln.

  3. Können Sie nun den Begriff Kreis unter Verwendung des Oberbegriffs Ellipse definieren?