Lösung von Aufgabe 2.1 (WS 11/12): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Zeile 5: | Zeile 5: | ||
Wenn eine Strecke a senkrecht zu einer Strecke b ist und Strecke a die Strecke b teilt, dann ist Strecke a Mittelsenkrechte der Strecke b. --[[Benutzer:Cmhock|Cmhock]] 16:06, 19. Okt. 2011 (CEST) | Wenn eine Strecke a senkrecht zu einer Strecke b ist und Strecke a die Strecke b teilt, dann ist Strecke a Mittelsenkrechte der Strecke b. --[[Benutzer:Cmhock|Cmhock]] 16:06, 19. Okt. 2011 (CEST) | ||
− | : Hier hätte ich eine Rückfrage. :-) Was genau bedeutet "teilen"? Und, wo genau steckt die "Mitte" in Ihrer Definition? --[[Benutzer:Spannagel|Spannagel]] 23:59, 19. Okt. 2011 (CEST) | + | : Hier hätte ich eine Rückfrage. :-) Was genau bedeutet "teilen"? Und, wo genau steckt die "Mitte" in Ihrer Definition? --[[Benutzer:Spannagel|Spannagel]] 23:59, 19. Okt. 2011 (CEST)<br /> |
+ | : Und auch noch eine kleine Bemerkung von mir, um zu vermeiden, dass man sich etwas falsch merkt: Eine Mittelsenkrechte ist '''immer eine Gerade''' und keine Strecke.--[[Benutzer:Andreas|Tutor Andreas]] 09:59, 20. Okt. 2011 (CEST)<br /> | ||
Wenn es eine Punktmenge gibt, von der jeder Punkt zu den Endpunkten A und B einer Strecke den gleichen Abstand hat, dann heißt diese Punktmenge Mittelsenkrechte dieser Strecke. --[[Benutzer:Teufelchen777|Teufelchen777]] 20:47, 19. Okt. 2011 (CEST) | Wenn es eine Punktmenge gibt, von der jeder Punkt zu den Endpunkten A und B einer Strecke den gleichen Abstand hat, dann heißt diese Punktmenge Mittelsenkrechte dieser Strecke. --[[Benutzer:Teufelchen777|Teufelchen777]] 20:47, 19. Okt. 2011 (CEST) | ||
: Ah, eine ganz andere Definition! Wenn man jetzt aber mal ''genau'' hinschaut: Theoretisch könnte ich ja jetzt zu einer Strecke eine Menge mit - sagen wir mal - drei Punkten angeben, die jeweils den gleichen Abstand zu den beiden Endpunkten der Strecke haben. Ist diese Menge, bestehend aus drei Punkten, dann die Mittelsenkrechte? --[[Benutzer:Spannagel|Spannagel]] 23:59, 19. Okt. 2011 (CEST) | : Ah, eine ganz andere Definition! Wenn man jetzt aber mal ''genau'' hinschaut: Theoretisch könnte ich ja jetzt zu einer Strecke eine Menge mit - sagen wir mal - drei Punkten angeben, die jeweils den gleichen Abstand zu den beiden Endpunkten der Strecke haben. Ist diese Menge, bestehend aus drei Punkten, dann die Mittelsenkrechte? --[[Benutzer:Spannagel|Spannagel]] 23:59, 19. Okt. 2011 (CEST) |
Version vom 20. Oktober 2011, 08:59 Uhr
Unter einer Konventionaldefinition versteht man eine Definition, die in der Form "Wenn-Dann" formuliert wurde.
Geben Sie zwei prinzipiell verschiedene Konventionaldefinitionen des Begriffs Mittelsenkrechte einer Strecke an.
Wenn eine Strecke a senkrecht zu einer Strecke b ist und Strecke a die Strecke b teilt, dann ist Strecke a Mittelsenkrechte der Strecke b. --Cmhock 16:06, 19. Okt. 2011 (CEST)
- Hier hätte ich eine Rückfrage. :-) Was genau bedeutet "teilen"? Und, wo genau steckt die "Mitte" in Ihrer Definition? --Spannagel 23:59, 19. Okt. 2011 (CEST)
- Und auch noch eine kleine Bemerkung von mir, um zu vermeiden, dass man sich etwas falsch merkt: Eine Mittelsenkrechte ist immer eine Gerade und keine Strecke.--Tutor Andreas 09:59, 20. Okt. 2011 (CEST)
Wenn es eine Punktmenge gibt, von der jeder Punkt zu den Endpunkten A und B einer Strecke den gleichen Abstand hat, dann heißt diese Punktmenge Mittelsenkrechte dieser Strecke. --Teufelchen777 20:47, 19. Okt. 2011 (CEST)
- Ah, eine ganz andere Definition! Wenn man jetzt aber mal genau hinschaut: Theoretisch könnte ich ja jetzt zu einer Strecke eine Menge mit - sagen wir mal - drei Punkten angeben, die jeweils den gleichen Abstand zu den beiden Endpunkten der Strecke haben. Ist diese Menge, bestehend aus drei Punkten, dann die Mittelsenkrechte? --Spannagel 23:59, 19. Okt. 2011 (CEST)