Quiz der Woche: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 15: Zeile 15:
 
{ Überlegungen zur Behauptung
 
{ Überlegungen zur Behauptung
 
| type="{}" }
 
| type="{}" }
<u>Behauptung:</u> Die Einteilung von <math>\ M</math> in die Teilmengen <math>\ T_1, T_2, T_3, ..., T_n, ...</math> ist eine { Klasseneinteilung }  
+
<u>Behauptung:</u> Die Einteilung von <math>\ M</math> in die Teilmengen <math>\ T_1, T_2, T_3, ..., T_n, ...</math> ist eine { Klasseneinteilung } von <math>\ M</math>.
 
Das bedeutet:  
 
Das bedeutet:  
 
(R) <math>R</math> ist { reflexiv }
 
(R) <math>R</math> ist { reflexiv }

Version vom 13. Mai 2010, 22:08 Uhr

Es sei R ein Äquivalenzrelation auf der Menge M. Wir zerlegen M derart in Teilmengen, dass gilt: Zwei Elemente von M liegen genau dann in derselben Teilmenge, wenn sie in Relation zueinander stehen.

Im folgenden soll bewiesen werden, dass die so gewonnenen Teilmengen von M eine Klasseneinteilung von M sind. Ergänzen Sie dementsprechend die folgenden Ausführungen:

Pluspunkt für eine richtige Antwort:  
Minuspunkte für eine falsche Antwort:
Ignoriere den Fragen-Koeffizienten:

1. Überlegungen zur Voraussetzung

Voraussetzung: R ist eine
Das bedeutet:
(R) R ist
(S) R ist
(T) R ist

Punkte: 0 / 0
Pluspunkt für eine richtige Antwort:  
Minuspunkte für eine falsche Antwort:
Ignoriere den Fragen-Koeffizienten:

1. Überlegungen zur Behauptung

Behauptung: Die Einteilung von \ M in die Teilmengen \ T_1, T_2, T_3, ..., T_n, ... ist eine von \ M.
Das bedeutet:
(R) R ist
(S) R ist
(T) R ist

Punkte: 0 / 0
Pluspunkt für eine richtige Antwort:  
Minuspunkte für eine falsche Antwort:
Ignoriere den Fragen-Koeffizienten:

1. Was ist zu zeigen?

Behauptung:
Die Einteilung unserer Menge \ M in die Teilmengen \ T_1, T_2, T_3, ..., T_n, ... ist eine {Klasseneinteilung).

Punkte: 0 / 0