12)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Die Idee

Entsprechend der Bezeichnung Schubspiegelung würde man unter einer Schubspiegelung dir Nacheinanderausführung Einer Verschiebung mit einer Geradenspiegelung verstehen. Diese Idee ist auch exakt das, was man unter einer Scubspieglung versteht. Trotzdem sie die Definition wie eine Einschränkung dieser Vorstellung aus.

Die Definition

Definition: (Schubspiegelung)

Es sei V=S_b \circ S_a eine Geradenspiegelung und g eine Gerade, die senkrecht auf den Spiegelachsen a und b steht. Die NAF S_g \circ V heißt Schubspiegelung mit der Schubspiegelachse g.

Spiegelschiebung?

Entsprechend obiger Definition ist die NAF einer Geradenspiegelung und einer Verschiebung kommutativ,falls sie den Bedingungen der Definition Schubspiegelung genügen.

Satz SCH/1

Es sei S_g \circ V eine Schubspieglung. Dann gilt S_g \circ V = V \circ S_g

Beweis

Es sei S_g \circ V = S_g \circ \left(S_b \circ S_a\right).
Die Geraden a,b, g haben damit die folgenden Eigenschaften.
  1. a \|| b
  2. g \perp a
  3. g \perp b
Beweis der Kommutativität S_g \circ \left( S_b \circ S_a \right) = \left( S_b \circ S_a \right) \circ S_g
Nr. Beweisschritt Begründung
(I) SCH_g=S_g \circ \left( S_b \circ S_a \right) die gegebene Schubspiegelung als NAF dreier Geradenspeigelungen
(II) SCH_g = \left( S_g\circ S_b \right) \circ S_a (I), Assoziativität der NAF von Abbildungen
Element Element Element
Element Element Element
Element Element Element