Umkehrung des Stufenwinkelsatzes (SoSe 12)
Aus Geometrie-Wiki
Version vom 4. Juli 2012, 13:57 Uhr von Buchner (Diskussion | Beiträge)
Inhaltsverzeichnis |
Stufenwinkel, Wechselwinkel, entgegengesetzt liegende Winkel
In welchen Fällen handelt es sich um....
- Stufenwinkel
- Wechselwinkel
- entgegengesetzt liegende Winkel?
Definition X.1: (Stufenwinkel)
Zwei Winkel <(p,q) und <(r,s) heißen Stufenwinkel,... (ergänzen Sie)
Definition X.2: (Wechselwinkel)
Zwei Winkel <(p, q) und <(r, s) heißen Wechselwinkel,...(ergänzen Sie)
Definition X.3: (entgegengesetzt liegende Winkel)
Zwei Winkel und sind entgegengesetzt liegende Winkel,...(ergänzen Sie)
Die Umkehrung des Stufenwinkelsatzes
Satz X.1: (Umkehrung des Stufenwinkelsatzes)
- Es seien und zwei nicht identische Geraden, die durch eine dritte Gerade jeweils geschnitten werden. Es seien ferner und zwei Stufenwinkel, die bei dem Schnitt von mit und entstehen mögen.
- Wenn die beiden Stufenwinkel und kongruent zueinander sind, dann sind die Geraden und parallel zueinander.
- Es seien und zwei nicht identische Geraden, die durch eine dritte Gerade jeweils geschnitten werden. Es seien ferner und zwei Stufenwinkel, die bei dem Schnitt von mit und entstehen mögen.
Beweis von Satz X.1: (Umkehrung des Stufenwinkelsatzes)
Es seien und drei paarweise nicht identische Geraden. Die Gerade möge in dem Punkt und die Gerade in dem Punkt schneiden. und sei ein Paar von Stufenwinkeln, welches bei dem Schnitt von und mit entstehen möge.
Voraussetzung:
(i)
Behauptung:
Annahme:
Den Rest können Sie selbst!