Lösung Aufgabe 9.7 WS 12 13

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgabe 9.7

In der Ebene \varepsilon seien eine Gerade g und ein Punkt P mit P \in g gegeben.
Beweisen Sie:

  1. \exist s \subset \varepsilon: P \in s \wedge s \perp g
  2. s_1 \subset \varepsilon \wedge P \in s_1 \wedge s \perp g \Rightarrow \neg \exist s_2: s_2 \subset \varepsilon \wedge P \in s_2 \wedge s_2 \perp g \wedge s_2 \not \equiv s_1

Lösung von User ...

Lautet die Voraussetzung: Existenz ebene und g Element der ebene und p Element g Lautet die Behauptung : P Element s und s orthogonal zu g

--Hauleri 14:36, 25. Jan. 2013 (CET)

Bemerkung --*m.g.* 13:25, 26. Jan. 2013 (CET)

Das steht so nirgends:
Voraussetzung:
In der Ebene \varepsilon seien eine Gerade g und ein Punkt P mit P \in g gegeben.
Wir gehen also von einer Ebene \varepsilon aus. Ob die Existiert schert uns wenig. In \varepsilon möge eine Gerade g gelegen sein und auf dieser Geraden ein Punkt P. Sollte eine derartige Konstellation vorliegen, wissen wir Folgendes:

Lösung von User ...