Bewegungen (2010)
Inhaltsverzeichnis |
Der Begriff der Bewegung
Die Grundideen
Starrheit
Kopieren
Abstraktion von den physikalischen Gegebenheiten
Die Materie scheint schwer genug zu sein. Wir werden unsere Betrachtungen auf eine einzige Ebene ε einschränken.
Die Lochschablone ist nichts anderes als das Modell unserer Ebene. Leider muss jedes physikalische Modell, mit dem der Schüler auch noch konkret handelnd tätig werden soll, flächenmäßig beschränkt sein.Für den mathematischen Bewegungsbegriff abstrahieren wir von dieser Beschränktheit. Das ist uns eigentlich schon länger klar, soll an dieser Stelle jedoch noch einmal besonders hervorgehoben und betont werden.
Hinter der Idee des Kopierens steckt nichts anderes als der mathematische Abbildungsbegriff. Jedem Original wird ein Bild zugeordnet.
Der Definitionsbereich für unsere Abbildungen ist die gesamte Ebene. Ihr Bild ist sie selbst. Jeder Punkt der Ebene ε wird auf genau einen Punkt der Ebene ε abgebildet. Aus mathematischer Sicht ist es egal, ob unser Ebenenmodell aus Plastik oder Glas ist. Aus Gummi dürfte es allerdings nicht sein, denn Gummimatten sind mit Sicherheit nicht starr. Die Starrheit bedeutet nichts weiter, als dass zwei Originalpunkte denselben Abstand haben wie ihre Bildpunkte.
Der Begriff der Bewegung
Definition
Definition 1.1: Bewegung
- Eine Bewegung ist eine Abbildung der Ebene auf sich selbst, die ... (Ergänzen Sie).
Bemerkung: Der Begriff der Kongruenzabbildung ist synonym zum Bewegungsbegriff.
Eigenschaften von Bewegungen
Satz 1.1: (Bijektivität von Bewegungen)
- Jede Bewegung ist eine Bijektion.
Beweis von Satz 1.1
Es sei eine Bewegung, die die Ebene auf sich selbst abbildet.
Wir haben zu zeigen, dass ein Bijektion ist.
Hierzu haben wir zu zeigen, dass die Abbildung
und
ist.