12)
Aus Geometrie-Wiki
Version vom 16. Januar 2012, 11:25 Uhr von *m.g.* (Diskussion | Beiträge)
Zentralprojektionen
Wie kommt Lara Croft auf den Bildschirm?
Begriff der Zentralprojektion
Definition II.01: (Zentralprojektion des Raumes auf eine Ebene)
- Es sei eine Ebene des Raumes und ein Punkt aus der nicht zu gehört.
Die Zentralprojektion ist eine Abbildung von auf die Ebene mit:
- Die Ebene heißt Bildebene bei der Zentralprojektion und der Punkt Zentralpunkt der .
- Es sei eine Ebene des Raumes und ein Punkt aus der nicht zu gehört.
Definition II.02: (Zentralprojektion der Ebene auf eine Gerade)
- Versuchen Sie es selbst.
- Versuchen Sie es selbst.
Definition II.03: (Richtung)
- Eine Richtung ist eine Äquivalenzklasse nach der Relation "parallel" auf der Menge aller Geraden.
Definition II.04: (Parallelprojektion des Raumes auf eine Ebene)
- Es sei eine Ebene des Raumes und eine Richtung mit .
- Unter der Parallelprojektion des Raumes auf die Bildebene mit der Projektionsrichtung versteht man die Abbildung von auf , die jedem Punkt derart auf sein Bild abbildet, dass gilt:
- mit
Definition II.05: (Parallelprojektion der Ebene auf eine Gerade)
- Es sei eine Gerade der Ebene und eine Richtung in mit .
- Unter der Parallelprojektion der Ebene auf die Bildgerade versteht man die Abbildung, die jeden Punkt derart auf sein Bild abbildet, dass gilt:
- mit .
- In Zeichen:
Satz II.01: (Fixpunkte bei Parallelprojektionen)
- Es sei eine Parallelprojektion der Ebene auf die Gerade . Jeder Punkt der Bildgeraden ist bezüglich ein Fixpunkt.
Satz II.02: Satz von der Mittelparallelen im Dreieck
- Es sei eine Dreieck mit den schulüblichen Bezeichnungen. Ferner seien und die Mittelpunkte der Seiten bzw. des Dreiecks . Dann gilt:
- (I)
- (II)
- Es sei eine Dreieck mit den schulüblichen Bezeichnungen. Ferner seien und die Mittelpunkte der Seiten bzw. des Dreiecks . Dann gilt:
Satz II.03: Projektionssatz
- Es sei eine Parallelprojektion der Ebene auf die Gerade . Die Gerade möge in und nur in schneiden. sei eine Folge von Punkten auf mit . seiene die Bilder von bei .
- Dann gilt: .
- Es sei eine Parallelprojektion der Ebene auf die Gerade . Die Gerade möge in und nur in schneiden. sei eine Folge von Punkten auf mit . seiene die Bilder von bei .