Lösung von Zusatzaufgabe 3.3 (SoSe 12)
Aus Geometrie-Wiki
Version vom 14. Mai 2012, 16:45 Uhr von *m.g.* (Diskussion | Beiträge)
Aufgabe 3
Wir gehen von folgender Implikation aus: Wenn zwei Winkel Nebenwinkel sind, so sind sie supplementär.
a) Wie lautet die Kontraposition dieser Implikation?
b) Wie lautet die Annahme, wenn Sie diese Implikation durch einen Widerspruch beweisen möchten?
Lösung von Gauglera
a) Wenn zwei Winkel nicht supplementär sind, dann sind sie keine Nebenwinkel.
b) Wenn zwei Winkel nicht supplementär sind (UND) so sind sie Nebenwinkel. (stimmt das so?) --Gauglera 16:14, 14. Mai 2012 (CEST)
Bemerkung von M.G. zur Lösung von Gauglera
a) ist perfekt gelöst.
b) Es seien und
zwei Winkel.
- Voraussetzung:
und
sind Nebenwinkel.
- Behauptung:
und
sind supplementär
- Voraussetzung:
Die Voraussetzung bleibt erhalten. Die Annahme ist die Neagtion der Behauptung. Mehr brauchen Sie nicht zu formulieren. --*m.g.* 16:44, 14. Mai 2012 (CEST)