Lösung von Aufgabe 5.4 P (SoSe 13)
Es seien eine Ebene E (aufgefasst als Punktmenge) und eine Gerade g in E gegeben. Wir betrachten folgende Relation ( ist ein willkürlich gewähltes Symbol, um die Relation nicht mit dem unauffälligen Buchstaben R bezeichnen zu müssen) in der Menge (also alle Punkte der Ebene E, die nicht der Geraden g angehören): Für beliebige gilt: .
a) Beschreiben Sie die Relation verbal und veranschaulichen Sie diese Relation.
Zwei Punkte stehen genau dann in R, wenn die Strecke AB die Gerade g nicht schneidet.--Blumenkind 16:11, 24. Mai 2013 (CEST)Blumenkind 24. Mai 16:11
b) Begründen Sie anschaulich, dass eine Äquivalenzrelation ist. Formulieren Sie dazu die Eigenschaften von Äquivalenzrelationen konkret auf die Relation bezogen.
Hinweis: Sie können die Transitivität noch nicht exakt beweisen; in dieser Aufgabe geht es zunächst darum, die Relationseigenschaften als geometrische Eigenschaften zu interpretieren und zu verstehen.
- reflexiv, weil für alle A Element der Ebene E ohne der Gerade g gilt: A steht in Relation zu A
- symmetrisch, weil für alle ( A, B, C) Element Relation gilt: Strecke AB vereinigt mit der Geraden g = leere Menge --> Strecke BA vereinigt mit g = leere Menge , da Strecke AB = Strecke BA.
- transitiv, weil für alle ( A,B,C) Element der Ebene E ohne g gilt: Strecke AB vereinigt mit g = leere Menge und Strecke BC vereinigt mit g = leere Menge --> Strecke AC vereinigt mit g= l. Menge.--Blumenkind 16:09, 24. Mai 2013 (CEST)Blumenkind 24. Mai 16:09