Der Basiswinkelsatz WS 16 17

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Der Basiswinkelsatz

Gleichschenklige Dreiecke

Definition VIII.1 : (gleichschenkliges Dreieck)

Ein Dreieck ist dann gleichschenklig, wenn es zwei gleich lange Seiten hat. Diese zwei Seiten nennt man Schenkel, die dritte Seite wird Basis genannt. Die Winkel zwischen Schenkel und Basis heißen Basiswinkel. --Regenbogen (Diskussion) 17:59, 15. Dez. 2016 (CET)

Der Basiswinkelsatz

Satz VIII.1: (Basiswinkelsatz)
In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.

Beweis:
Voraussetzung: ...

Behauptung: ...

Nr. Skizze Beweisschritt Begründung
(1) Gleichschenklig 2.png \left| AC \right|=\left| BC \right| ergänzen Sie ---
(2)

Gleichschenklig 3.png
C\in m mit m ist Mittelsenkrechte von \overline{AB} ---
(3)


B=S_{m}(A) ---
(4)


C=S_{m}(C) ---
(5)


M=S_{m}(M) ---
(6a)


 S_{m} (\angle MAC ) = \angle MBC  ---
(6b)


\angle MAC \tilde {=} \angle MBC  ---