Die Umkehrung des Stufenwinkelsatzes (SoSe 11)

Aus Geometrie-Wiki
Version vom 5. Juli 2011, 13:15 Uhr von Schnirch (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Stufenwinkel, Wechselwinkel, entgegengesetzt liegende Winkel

In welchen Fällen handelt es sich um....

Stufenwinkel
Wechselwinkel
entgegengesetzt liegende Winkel?

Definition X.1: (Stufenwinkel)

(ergänzen Sie)


Definition X.2: (Wechselwinkel)

(ergänzen Sie)


Definition X.3: (entgegengesetzt liegende Winkel)

(ergänzen Sie)

Die Umkehrung des Stufenwinkelsatzes

Satz X.1: (Umkehrung des Stufenwinkelsatzes)
Es seien \ a und \ b zwei nicht identische Geraden, die durch eine dritte Gerade \ c jeweils geschnitten werden. Es seien ferner \ \alpha und \ \beta zwei Stufenwinkel, die bei dem Schnitt von \ c mit \ a und \ b entstehen mögen.
Wenn die beiden Stufenwinkel \ \alpha und \ \beta kongruent zueinander sind, dann sind die Geraden \ a und \ b parallel zueinander.
Beweis von Satz X.1: (Umkehrung des Stufenwinkelsatzes)

Es seien \ a, b und \ c drei paarweise nicht identische Geraden. Die Gerade \ c möge \ a in dem Punkt \ A und die Gerade \ b in dem Punkt \ B schneiden. \ \alpha und \ \beta sei ein Paar von Stufenwinkeln, welches bei dem Schnitt von \ a und \ b mit \ c entstehen möge.

Voraussetzung:

(i) \ \alpha \cong \beta

Umkehrung stufenwinkelsatz 01.png

Behauptung:

\ a  \| b

Annahme:

a\not\| b

Den Rest können Sie selbst!