Der Basiswinkelsatz WS 12 13
Aus Geometrie-Wiki
Version vom 8. Januar 2013, 13:53 Uhr von Schnirch (Diskussion | Beiträge)
Inhaltsverzeichnis |
Der Basiswinkelsatz
Gleichschenklige Dreiecke
Definition VIII.1 : (gleichschenkliges Dreieck)
Das können sie selbst. Bringen Sie in der Definition die Begriffe Basis, Basiswinkel und Schenkel eines gleichschenkligen Dreiecks unter.
Übungsaufgabe
Der Basiswinkelsatz
Satz VIII.1: (Basiswinkelsatz)
- In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
- In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
Beweis:
Voraussetzung: Das können Sie selbst:
Behauptung: Auch das sollte kein Problem sein:
Nr. | Skizze | Beweisschritt | Begründung |
---|---|---|---|
(1) | Begründung? | ||
(2) | |
mit ist Mittelsenkrechte von | Begründung? |
(3) | |
Begründung? | |
(4) | |
Begründung? | |
(5) | |
Begründung? | |
(6) | |
Begründung? |