Lösung von Aufgabe 11.5P (SoSe 13)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Zeigen Sie, dass die Verkettung einer Drehung D_{\left( S,\alpha \right) } mit einer Verschiebung wieder eine Drehung D_{\left( P,\alpha \right) } ergibt. Wo liegt das neue Drehzentrum P?

Vor.: Sa∘Sb∘Sc∘Sd
mit Sa∘Sb ≔ D(S,α) mit a ∩ b = {S} ∧ |∠ab| = α
mit Sc∘Sd ≔ Verschiebung mit c || d --Nolessonlearned 14:08, 12. Jul. 2013 (CEST)

Beh.: D(P,α)
mit Sa'∘Sd' ∧ a' ∩ d' = {P} ∧ |∠ab| ≌ |∠a'd'|--Nolessonlearned 14:08, 12. Jul. 2013 (CEST)


Beweisschritte Begründung
1) Sa∘Sb∘Sc∘Sd Voraussetzung
2) Sa'∘Sb'

mit |∠ab| ≌ |∠a'b'| und b' || c

(1); Vor.; Winkelkongruenz;

Def. Drehung

3) Sc'∘Sd'

mit c' = b' (Identität) mit |cd| = |c'd'| mit c' || d'

(2); Vor.; Def. Verschiebung
4) Sa'∘Sd' ≔ D(P,α)

mit a' ∩ d' = {P} mit |∠a'd'| = |∠ab| = α

(1); (2); (3); Vor.
--Nolessonlearned 14:08, 12. Jul. 2013 (CEST)

So kannst du das beweisen. Allerdings lassen sich die Schritte 2 und 3 nicht aus den Definitionen der Drehung und Verschiebung ableiten, sondern aus Sätzen (z.B. Satz IX. 2). Deshalb musst du Eigenschaften der Drehung bzw. Verschiebung schreiben. Bei Schritt 4 fände ich ganz schön, wenn du noch begründest, warum du Spiegelung an Gerade b' und c' weggelassen hast. Dies ist vielleicht sogar in einem zusätzlichen Schritt vor 4.) übersichtlicher.--Tutorin Anne 16:06, 12. Jul. 2013 (CEST)