Lösung von Zusatzaufgabe 11.2P (SoSe 13)
Aus Geometrie-Wiki
Version vom 12. Juli 2013, 16:32 Uhr von Tutorin Anne (Diskussion | Beiträge)
Beweisen Sie Satz IX.9:
Gegeben seien zwei zueinander parallele Spiegelgeraden a und b. Wir betrachten die Verkettung
. Jeder Punkt P hat dabei zu seinem Bildpunkt
einen Abstand der doppelt so groß ist wie der Abstand der beiden Spiegelgeraden.
Hinweis: Hier genügt ein exemplarischer Beweis für eine mögliche Lage von P. Nehmen wir doch mal an, P und seine Spiegelpunkte liegen so:
--Tutorin Anne 17:30, 12. Jul. 2013 (CEST)
| Voraussetzung | ... |
| Behauptung | .... |
| Nr. | Beweisschritt | Begründung |
|---|---|---|
| 1 | ...) | ... |
| 2 | ... | ... |
| 3 | ... | ... |
| 4 | ... | ... |
| ... | ... | ... |
| ... | ... | ... |

