Lösung von Zusatzaufgabe 2.5P (WS 13 14)
Aus Geometrie-Wiki
Version vom 9. November 2013, 11:03 Uhr von Knöbelspieß (Diskussion | Beiträge)
Welche Definition für Kreis ist richtig? Warum (nicht)?
- Sei ein Punkt und eine Menge, deren Elemente Punkte sind. Wenn gilt: ist konstant, so ist ein Kreis mit Mittelpunkt .
- Sei ein Punkt und eine Punktmenge. Wenn gilt: , dann ist ein Kreis.
- Sei ein Punkt in der Ebene und eine Punktmenge. Wenn alle Punkte enthält für die gilt∶ und , dann ist ein Kreis mit dem Mittelpunkt .
- Sei ein Punkt in der Ebene und eine Punktmenge. Wenn genau alle Punkte enthält für die gilt∶ und , dann ist ein Kreis mit dem Mittelpunkt .
- Sei ein Punkt in der Ebene und eine Menge, deren Elemente Punkte sind. Wenn für alle gilt∶ , dann ist ein Kreis.
- Sei ein Punkt und eine Menge, deren Elemente Punkte sind. Alle Elemente von liegen in ein und derselben Ebene wie . Wenn gilt: ist konstant, so ist ein Kreis mit Mittelpunkt .
Def. 1 ist ungenügend, weil die Eingrenzung auf die Ebene fehlt.
Def. 2 ist Def. 1 in Symbolen.
Def. 3 ist ungenügend, da Punkte, die nicht den Kreis bilden nicht ausgeschlossen sind.
Def. 4 ist richtig, da die Problematik aus Def. 3 mithilfe des "genau alle Punkte" beseitigt wurde.
Def. 5 ist ungenügend, da die Punktmenge P nicht alle Punkte des Kreises enthalten muss.
Def. 6 ist fehlerhaft, da man keinen Abstand zwischen einem Punkt und einer Punktmenge setzen kann.
--Knöbelspieß 11:03, 9. Nov. 2013 (CET)