Didaktik der Bruchrechnung
Aus Geometrie-Wiki
Version vom 21. Februar 2017, 12:58 Uhr von *m.g.* (Diskussion | Beiträge)
Inhaltsverzeichnis |
Fachliche Grundlagen
Bruchbegriff
Äquivalenzrelationen
Reflexivität
Jedes Element steht zu sich selbst in Relation.
Symmetrie
Wenn a in Relation zu b, dann auch b in Relation zu a.
Transitivität
Wenn a in Relation zu b und b in Relation zu c, dann a in Relation zu c.
Beispiele:
Parallelität von Geraden, Gleicheitsrelation (=), Quotientengleichheit für Brüche,
Gegenbeispiele
senkrecht auf der Menge der Geraden (Reflexivität und Transitivität verletzt)
Klasseneinteilungen
Brüche
Jeder Bruch ist ein geordnetes Paar von natürlichen Zahlen z und n, das in der Form gechrieben wird.
gebrochene Zahlen bzw. Bruchzahlen
Unter einer gebrochenen Zahl versteht man eine Menge von Brüchen, die durch Kürzen oder Erweitern auseinander hervorgehen.
Relation: (quotientengleich)
Zwei Brüche und heißen quotientengleich, wenn
gilt.