Was ist eine Gruppe? SoSe 2017

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Beispiele für Gruppen

endliche Gruppen

Die Gruppe der Deckabbildungen des Rechtecks

Die Gruppe der Deckabbildungen der Raute

Gegenbeispiele für Gruppen

Gruppendefinitionen

Die "übliche" Gruppendefinition (lange Version)

Definition


Es sei G eine nichtleere Menge auf der eine Verknüpfung \odot.
Wenn die folgenden Axiome erfüllt sind, heißt die Struktur \mathbb{G}:=[G, \odot ] Gruppe:

  1. \odot ist auf G abgeschlossen: \forall a,b \in G: a \odot b \in G
  2. \odot ist assoziativ auf G: \forall a, b, c \in G: (a \odot b) \odot c = a \odot (b \odot c)
  3. Bezüglich \odot existiert in G ein ("universelles") Einslement e: \exist e \in G \forall a \in G: a \odot e = e \odot a= a .
  4. Bezüglich \odot existiert zu jedem a aus G ein ("persönliches") inverses Element a^{-1}: \forall a \in G \exist a^{-1} \in G: a \odot a^{-1} = a^{-1} \odot a = e.