Lösung von Aufgabe 1.3 SoSe 2017
Aus Geometrie-Wiki
Version vom 15. Mai 2017, 10:54 Uhr von *m.g.* (Diskussion | Beiträge)
Aufgabe 1.3. Algebra SoSe 2017
Unter der Ordnung einer Gruppe versteht man die Anzahl ihrer Elemente. Es gibt (bis auf Isomorphie) genau 2 Gruppen der Ordnung 4. Die Klein'sche Vierergruppe und die zyklische Gruppe der Ordnung 4.
- Geben Sie für jede der beiden Gruppen zwei Beispiele an.
- Definieren Sie was man unter der Klein'schen Vierergruppe versteht.
- Definieren Sie die andere der beiden Vierergruppen.
Lösungen: zu 1.
- Deckdrehungen des Qudrates: zyklische Gruppe
: zyklische Gruppe
- Deckabbildungen des Rechtecks: Klein'sche Vierergruppe
- Deckabbildungen der Raute: Klein'sche Vierergruppe