Lösung von Aufgabe 12.4
Aus Geometrie-Wiki
Version vom 13. Juli 2010, 00:14 Uhr von Heinzvaneugen (Diskussion | Beiträge)
Beweisen Sie die Existenz und die Eindeutigkeit des Lotes von einem Punkt \ P auf eine Gerade \ g.
Existenz
Eindeutigkeit
Voraussetzung: Gerade , Punkt , Lot von auf mit Lotfußpunkt
Behauptung: Es existiert genau ein Lot von auf .
Indirekter Beweis - Annahme: Es existieren zwei "Lote" von auf .
Annahme: Es existiert ein zweiter Lotfußpunkt
Nr. | Beweisschritt | Begründung |
---|---|---|
(I) | Es existiert ein Dreieck | VSS, , Punkte sind nicht kollinear |
(II) | VSS, ist Lotfußpunkt | |
(III) | VSS, ist Lotfußpunkt | |
(IV) | Außenwinkel von | Supplementaxiom |
(V) | Außenwinkel von
|
Schwacher Außenwinkelsatz |
(VI) | Annahme muss verworfen werden | Widerspruch zwischen (V) und (III)!!! |