Gruppendefinition (Gleichung)
Eindeutigkeit des EinslementesSatz 3Jede Gruppe hat genau ein Einslement. Beweis von Satz 3Es sei eine Gruppe. Nach der Definition des Begriffs Gruppe hat eine Einslement . Es bleibt zu zeigen, dass kein weiteres Einslement hat. Wir nehmen an es gibt mit . Nach Satz 2 sind und von links und von rechts Einselemente. Wir gehen aus von der Gleichung . Aus dieser Gleichung folgt wegen der Einslement eigenschaft beider Elemente und (und das sowohl von rechts, wie auch von links) . Eindeutigkeit der inversen ElementeSatz 4In jeder Gruppe gilt: Jedes Gruppenelement hat genau ein inverses Element. Beweis von Satz 4Es sei eine Gruppe mit dem Einslement . Nach der Definition des Begriffs Gruppe hat in ein Inverses bezüglich . Wir nehmen an, hat in ein weiteres Inverses , das natürlich von verschieden ist. Nach Satz 1 wissen wir, dass und von links und von rechts invers zu bzgl. sind. Die triviale Gleichung "pumpen" wir zu auf. (II) multiplizieren wir auf beiden Seiten von links mit und erhalten . (III) verkürzt sich zu , was ein Widerspruch zu unserer Annahme ist. |