Der Inkreis und die Winkelhalbierenden eines Dreiecks

Aus Geometrie-Wiki
Version vom 18. Juli 2010, 13:53 Uhr von Tja??? (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Definition Winkelhalbierende:

Ein Winkelhalbierende eines Winkels <ASB ist ein Strahl SP+, der im Inneren des Winkels <ASB liegt und den Winkel <ASB halbiert.

Winkelhalbierendekriterium


Eine Punktmenge ist genau dann Winkelhalbierende eines Winkels <ASB, wenn sie alle Punkte enthält, die im Inneren des Winkels liegen und die zu den Schenkeln SA+ und SB+ den gleichen Abstand haben.

Satz über die Winkelhalbierenden eines Dreiecks

Die Winkelhalbierenden eines Dreiecks schneiden sich genau in einem Punkt. Dieser Punkt heißt Inkreismittelpunkt.

Alternativ: Jedes Dreieck besitzt genau einen Inkreis.


--Tja??? 12:53, 18. Jul. 2010 (UTC)