Serie 1 Geradengleichungen in der Ebene
Aus Geometrie-Wiki
Version vom 2. Mai 2019, 15:02 Uhr von *m.g.* (Diskussion | Beiträge)
Aufgabe 1
Gegeben seien die Punkte und .
Beschreiben Sie die Gerade jeweils durch eine Gleichung der Form
.
Aufgabe 2
Die Gerade möge die Achse unter einem Winkel von im Punkt schneiden.
- Zeichnen Sie ein kartesisches Koordinatensystem auf ein Blatt Papier. Konstruieren Sie nur mit Zirkel und Lineal eine grafische Darstellung der Geraden bezüglich Ihres Koordinatensystems.
- Geben Sie eine Gleichung der Form zur Beschreibung von an.
- Geben Sie eine Gleichung der Form zur Beschreibung von an.
- Geben Sie eine Gleichung der Form zur Beschreibung von an.
Aufgabe 3
Eine Gerade habe ein Anstiegsdreieck, dessen zur Achse parallele Kathete die Länge hat. Die andere Kathete möge die Länge haben. Geben sie fünf Vektoren an, die bezüglich Normalenvektoren sind.