GeometrieUndUnterrichtSS2019 06

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Vorbereitungsauftrag

Die Klasse 6a hat gerade gelernt, mit Schnur oder Zirkel Kreise zu zeichnen und weiß, dass „ein Kreis mit Radius 3cm“ aus allen Punkten besteht, die vom Mittelpunkt M genau 3cm entfernt sind. Nun sollen die Kinder einen Punkt finden („konstruieren“), der von A(1;3) genau 7cm und von B(4;1) genau 5cm entfernt ist.

Eine Schüler*in kommt ans Pult. Mit spitzem Bleistift gezeichnet, bietet sie Ihnen voller Stolz in ihrem Heft einen solchen Punkte C an. Sie messen nach, es stimmt. Haargenau! Nur leider sind im Heft der Schüler*in weder Zirkelspuren zu finden noch ein Einstich einer Zirkelspitze.

(adaptiert aus Riemer (2014). „Erziehen im Mathematikunterricht.“ In: Kaenders & Schmidt (Hrsg.) Mit GeoGebra mehr Mathematikverstehen.)

Ergebnisse des Vorbereitungsauftrags

Schreiben Sie auf, wie Sie in dieser Situation reagieren würden.

Reaktion von MAX MUSTER

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Reaktion von Wibke

Ich würde den Schüler zuerst loben, dass er die Aufgabe richtig gelöst hat und dabei fragen, wie er auf seine Lösung gekommen ist. Abhängig davon, ob seine Methode in all solchen Aufgaben, die mit Zirkel und Lineal gelöst werden sollen immer funktioniert oder nicht, würde ich ihn motivieren auch den Weg mit Zirkel und Lineal auszuprobieren. Alternativ könnte man den Schüler auch bitten seinen Lösungsweg vor der Klasse vorzustellen und im gleichen Zuge auch einen anderen Schüler bitten, die „herkömmliche“ Methode vorzustellen, damit im Klassengespräch erörtert werden kann, welche Vor- und Nachteile es bei der jeweiligen Methode gibt.

Literaturhinweise