Übungsaufgaben zur Algebra, Serie 2 SoSe 2019
Aus Geometrie-Wiki
Version vom 18. Juni 2019, 13:15 Uhr von *m.g.* (Diskussion | Beiträge)
Aufgabe 01Es sei die Menge aller reellen Funktionen die durch eine Funktionsgleichung vom Typ beschreibbar sind . Unter wollen wir die NAF von Funktionen verstehen. Beweisen Sie: ist eine Gruppe. Aufgabe 02Es sei die Menge aller reellen Funktionen die durch eine Funktionsgleichung vom Typ beschreibbar sind . Unter wollen wir die NAF von Funktionen verstehen. Beweisen Sie: ist eine Untergruppe von . Aufgabe 03Untergruppenkriterium 1:
Beweisen Sie das Untergruppenkriterium 1 |