Übungsaufgabe zur Vorbereitung auf die vierte Sitzung

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
  1. Definieren Sie die Begriffe Zentriwinkel und Peripheriewinkel.
  2. Formulieren Sie den Zentriwinkel-Peripheriewinkelsatz in der Wenn-Dann-Form.
  3. Beweisen Sie den Zentriwinkel-Peripheriewinkelsatz unter Verwendung der Nacheinanderausführung zweier Geradenspiegelungen.
  4. Erläutern Sie, wie sich Ihr Beweis entsprechend Teilaufgabe 3 vereinfacht, wenn nicht der allgemeine Zentriwinkel-Peripheriewinkelsatz sondern dessen Spezialfall Satz des Thales zu beweisen ist.
  5. Wir spielen Billard:
    Bei einer Konstellation entsprechend der eingebetteten Geogebraapplikation soll die Kugel A zunächst die Bande c treffen, um dann Kugel B zu erreichen. Geben Sie eine Konstruktionsbeschreibung für die Spur der Kugel A an. Begründen Sie die Korrektheit ihrer Beschreibung.
  6. Mike kann es noch besser: Er trifft mit A die Kugel B über die vorherige Berührung erst der Bande c und dann der Bande d. Geben Sie auch hierfür eine Vorschrift zur Konstruktion der Spur von Kugel A an und begründen Sie die Korrektheit ihrer Konstruktionsbeschreibung.
  7. Es seien a und b zwei nichtidentische Geraden. Unter S_a und S_b wollen wir wie üblich die Geradenspiegelungen an a bzw. b verstehen. Formulieren Sie die Kontraposition der folgenden Implikation und beweisen sie diese.
    S_aS_b=S_bS_aab.
Kontraposition und Beispiel zu Nr. 7