Lösung von Aufg. 6.7
Es seien verschiedene Punkte der Ebene, von denen je drei stets nicht kollinear sind. Wie viele verschiedene Geraden gibt es, die jeweils durch zwei dieser Punkte gehen? Hinweis: Es gibt eine Problemlösestrategie: Führe einen komplizierten Fall auf einen einfacheren Fall zurück. Carl Friedrich Gauß hilft auch bei der Lösung dieser Aufgabe.
Also es gibt genau 6 Geraden, diese bilden zusammen einen Tetraeder.--Hasekm 15:53, 17. Nov. 2010 (UTC)
- Erklärung bitte :)
Meiner meinung nach gibt es genau 6 Geraden für n=4. Aber wir wollen wissen wieviel Geraden es für n viele Punkte gibt. Ich habe erstmal eine Tabelle gemacht
n Geraden
1 0
2 1
3 3
4 6
5 10
6 15
jetzt erkennt man, dass es eine Folge ist, Formel an=an-1+ (n-1) und a1=0 Ich bin mir nicht 100%ig sicher, da ich das letzte Mal zu Schulzeiten mit dieser Thematik zu tun hatte, aber es macht so irgendwie sinn ;)
Im Praktikum haben wir eine analoge Aufgabe einmal mit Schülern einer 7. Hauptschulklasse gelöst. Formulieren Sie obige Aufgabe für Schüler dieser Schulstufe.