11)
Inhaltsverzeichnis |
Mittelsenkrechte und Winkelhalbierende
Mittelsenkrechte
Eine Mittelsenkrechte ist das, was ihre Bezeichnung ausdrückt: eine Gerade, die eine Strecke halbiert und senkrecht auf ihr steht.
Definition VI.1: (Mittelsenkrechte)
- Es sei
eine Gerade und
eine Strecke, die durch
im Punkt
geschnitten wird.
ist die Mittelsenkrechte von
, wenn
- Es sei
Satz VI.1: (Existenz und Eindeutigkeit der Mittelsenkrechten)
- Jede Strecke hat in jeder Ebene, zu der die Strecke vollständig gehört, genau eine Mittelsenkrechte.
Beweis von Satz VI.1
Es sei eine Strecke, die vollständig zur Ebene
gehören möge.
Behauptungen:
- Es gibt in
eine Gerade
, die die Mittelsenkrechte von
ist.
- Es gibt in
nicht mehr als eine Gerade
, die die Mittelsenkrechte von
ist.
Beweis der Existenzbehauptung:
Aus Gründen der effizienten Bezeichnung führen wir den Punkt ein, der zur Ebene
aber nicht zur Geraden
gehören möge.
Nr. | Beweisschritt | Begründung |
---|---|---|
(i) | ![]() |
Existenz und Eindeutigkeit des Mittelpunktes |
(ii) | ![]() |
Winkelkonstruktionsaxiom |
(iii) | ![]() ![]() |
(i), (ii) |
--TimoRR 11:27, 6. Jan. 2011 (UTC)
Bemerkung: Ihnen fällt sicherlich auf, dass wir nach dem Beweis von Satz V.5 die Existenz der Mittelsenkrechten von gar nicht so ausführlich hätten führen müssen. Der Beweis von Satz V.5 steht momentan jedoch noch als Übungsaufgabe aus.
Beweis der Eindeutigkeitsbehauptung
Die Eindeutigkeit des Mittelpunktes einer Strecke wurde bereits bewiesen (Satz III.1). Die Eindeutigkeit der Senkrechten in einem Punkt einer Geraden zu dieser Geraden wird/wurde mit Satz V.5 bewiesen.
Winkelhalbierende
Ein Winkel ist ein Paar von Halbgeraden, die einen gemeinsamen Anfangspunkt haben. Eine Winkelhalbierende teilt einen Winkel in zwei Teilwinkel, die jeweils dieselbe Größe haben. Die Teilwinkel werden dadurch gebildet, dass jeder Schenkel des ursprünglichen Winkels jeweils mit der Winkelhalbierenden zu einem neuen Winkel zusammengefasst wird. Es ist also sinnvoll, die Winkelhalbierende eines Winkels als eine besondere Halbgerade zu definieren.
Definition VI.2 (Winkelhalbierende)
Es sei ASB ein Winkel und SP+ ein Strahl, der vollständig im Inneren vom Winkel ASB liegt. Der Strahl SP+ heißt Winkelhalbierende des Winkels ASB, falls die Winkel ASP und PSB dieselbe Größe haben.--Engel82 10:02, 15. Dez. 2010 (UTC)
- Es seien
,
und
drei Halbgeraden ein und derselben Ebene mit dem gemeinsamen Anfangspunkt
. Die Halbgerade
ist die Winkelhalbierende des Winkels
, wenn
im Inneren von
liegt und die beiden Winkel
und
dieselbe Größe haben. --Halikarnaz 21:10, 15. Dez. 2010 (UTC)
- Es seien
Satz VI.
- Es sei
die Winkelhalbierende des Winkels
. Dann gilt
.
- Es sei
Beweis von Satz VI.
Übungsaufgabe
Satz VI.2 (Existenz und Eindeutigkeit der Winkelhalbierenden)
siehe Auftrag der Woche 10.
Beweis von Satz VI.2
Tutorium_10