Projektionen und Strahlensätze 2010

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Zentralprojektionen

Wie kommt Lara Croft auf den Bildschirm?


358durer.jpg

Zentralperspektive zeichnen.png Lochkamera prinzip.jpg

Begriff der Zentralprojektion

Definition II.01: (Zentralprojektion des Raumes auf eine Ebene)

Es sei \ \beta eine Ebene des Raumes \mathfrak{R} und \ Z ein Punkt aus \mathfrak{R} der nicht zu \ \beta gehört.
Die Zentralprojektion \ ZP_{Z,\beta} ist eine Abbildung von \mathfrak{R}\setminus{Z} auf die Ebene \ \beta mit:
\forall P \in \mathfrak{R}\setminus{Z}: ZP_{Z,\beta}(P)=ZP \cap \beta
Die Ebene \ \beta heißt Bildebene bei der Zentralprojektion \ ZP_{Z,\beta} und der Punkt \ Z Zentralpunkt der \ ZP_{Z,\beta}.

Definition II.02: (Zentralprojektion der Ebene auf eine Gerade)

Versuchen Sie es selbst.
Es sei \ g eine Gerade der Ebene  \beta und \ Z ein Punkt aus  \beta der nicht zu \ g gehört.
Die Zentralprojektion \ ZP_{Z,g} ist eine Abbildung von \beta\setminus{Z} auf die Gerade \ g mit:
\forall P \in \beta\setminus{Z}: ZP_{Z,g}(P)=ZP \cap g
Die Gerade \ g heißt Bildgerade bei der Zentralprojektion \ ZP_{Z,g} und der Punkt \ Z Zentralpunkt der \ ZP_{Z,g}.
--Tja??? 10:47, 13. Jan. 2011 (UTC)

korrekt, --*m.g.* 15:54, 13. Jan. 2011 (UTC) Wie wäre es damit:

Definition II.03: (Parallelprojektion des Raumes auf eine Ebene)

Es sei \ \beta eine Ebene des Raumes \mathfrak{R} und \ g eine Gerade aus \mathfrak{R} mit \ \ g \not\|\mathfrak{R}.
Die Parellelenprojektion \ PP_{g,\beta} ist eine Abbildung von \mathfrak{R} auf die Ebene \ \beta mit:
\forall A \in \mathfrak{R}: \exists h: A \in h \land h \| g: PP_{g,\beta}(A)=h \cap \beta
Die Ebene \ \beta heißt Bildebene bei der Parallelenprojektion \ PP_{g,\beta} und die Gerade \ g heißt eine Repräsentantengerade (?? keine Ahnung, wie man die nennen könnte bzw. ob man üblicherweise überhaupt eine Gerade zum Definineren nutzt?) der \ PP_{g,\beta}.--Tja??? 17:13, 16. Jan. 2011 (UTC)

Definition II.04: (Parallelprojektion der Ebene auf eine Gerade)