11)

Aus Geometrie-Wiki
Version vom 28. Januar 2011, 11:53 Uhr von Schnirch (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Winkelhalbierenden eines Dreiecks

Definition XV.1 : (Winkelhalbierenden eines Dreiecks)
Unter den Winkelhalbierenden eines Dreiecks versteht man die Winkelhalbierenden der Innenwinkel des Dreiecks.
Satz XV.1a : (Abstand eines Punktes einer Winkelhalbierenden zu den Schenkeln des Winkels)
Jeder Punkt der Winkelhalbierenden eines Winkels hat zu den Schenkeln des Winkels jeweils ein und denselben Abstand.
Satz XV.1b : (Umkehrung von Satz XV.1a)

(das können Sie selbst:)

Winkelhalbierendenkriterium

(auch das sollten Sie jetzt selbst hinbekommen:)

Beweis siehe Übungsaufgabe

Satz XV.2 : (Schnittpunkt der Winkelhalbierenden eines Dreiecks)

Die Winkelhalbierenden eines Dreiecks schneiden sich in genau einem Punkt.

Beweis von Satz XV.2 mit Hilfe des Winkelhalbierendenkriteriums: Versuchen Sie es selbst:

Inkreis eines Dreiecks

Definition XV.2 : (Tangente an einen Kreis)

Eine Gerade \ t berührt einen Kreis \ k, wenn sie mit dem Kreis \ k genau einen Punkt \ P gemeinsam hat. Die Gerade \ t heißt Tangente im Punkt \ P.

Definition XV.3 : (Strecke berührt Kreis)

Eine Strecke \overline{AB} berührt einen Kreis \ k, wenn sie... (ergänzen Sie!)

Definition XV.4 : (Inkreis eines Dreiecks)
Ein Kreis, der alle drei Seiten eines Dreiecks in jeweils genau einem Punkt berührt, heißt Inkreis des Dreiecks.
Satz XV.3 : (Existenz und Eindeutigkeit des Inkreises)

...ergänzen Sie!