12)
Aus Geometrie-Wiki
Version vom 19. November 2011, 15:04 Uhr von Andreas (Diskussion | Beiträge)
Satz I: Je drei nicht kollineare Punkte sind paarweise verschieden.
- Wir formulieren Satz I neu und beginnen mit „Es seien , und drei Punkte.“ Ergänzen Sie: „Wenn , und … , dann … .“
- Beweisen Sie Satz I indirekt.
- Bilden Sie die Kontraposition von Satz I.
- Beweisen Sie auch die Kontraposition von Satz I.
- Formulieren Sie die Umkehrung von Satz I.
- Gilt auch die Umkehrung von Satz I?
zu 1. Wenn A,B,C nicht kollinear sind, dann sind sie paarweise verschieden.
zu 2. Behauptung: A ungleich B ungleich C
Annahme: o.B.d.A. A = B
Beiweis:
Schritt | Begründung |
Vorraussetzung A,B,C koll Axiom I1 (Was ist mit A,B,C koll gemeint? Nach VSS gilt nkoll(A,B,C)).--Tutor Andreas 15:04, 19. Nov. 2011 (CET) | |
BC=AC | Annahme A=B |
AB=A=B | Annahme (Diese Aussage finde ich etwas fragwürdig, denn nach Axiom I2 besteht jede Gerade aus mindestens 2 Punkten. Nach dieser Aussage würde aber eine Gerade existieren, die aus einem Punkt besteht, da A und B identisch sind bzw. wenn dies gelten würde, dann wäre doch streng genommen jeder Punkt eine Gerade... was sagen denn andere dazu?)--Tutor Andreas 15:04, 19. Nov. 2011 (CET) |
koll(A,B,C) | Wiederspruch zur Voraussetzung, daraus folgt die Punke müssen paarweise verschieden sein. |
zu 3. Wenn A,B,C nicht paarweise verschieden, dann sind sie Kollinear.
zu 4. Voraussetzung Es seien drei Punkte A,B,C und o.B.d.A A=B
Behauptung: koll (A,B,C)
Beweis:
Schritt | Begründung |
Axiom I/1 (Das Axiom I1 liefert, um genau zu sein, keine 3 Geraden. Das heißt, die Begründung muss erweitert werden.)--Tutor Andreas 15:04, 19. Nov. 2011 (CET) | |
BC=AC | Voraussetzung A=B |
AB=A=B | Voraussetzung (Diese Aussage finde ich etwas fragwürdig, denn nach Axiom I2 besteht jede Gerade aus mindestens 2 Punkten. Nach dieser Aussage würde aber eine Gerade existieren, die aus einem Punkt besteht, da A und B identisch sind bzw. wenn dies gelten würde, dann wäre doch streng genommen jeder Punkt eine Gerade... was sagen denn andere dazu?)--Tutor Andreas 15:04, 19. Nov. 2011 (CET) |
koll(A,B,C) | Axiom I/1 |
zu 5. Drei paarweise verschiedene Punkte sind nicht kollinar
zu 6. Nein, da auch Punkte existieren, welche koll sind und paarweise verschieden.--LGDo12 13:07, 17. Nov. 2011 (CET)