12)
Aus Geometrie-Wiki
Version vom 8. Dezember 2011, 23:15 Uhr von RicRic (Diskussion | Beiträge)
Gegeben seien drei paarweise verschiedene und kollineare Punkte A, B und C in einer Ebene E. Ferner sei eine Gerade g Teilmenge der Ebene E, wobei keiner der Punkte A, B und C auf g liegen möge. Beweisen Sie folgenden Zusammenhang:
Vor.:
Beh.:
Beweis:
Schritt | Begründung |
---|---|
(1) | Vorr |
(2) | Dreiecksungleichung, Abstand kann nicht negativ sein |
(3)Fall 1: Behaupt stimmt |
verschiedene Geraden haben höchstens einen Punkt gemeinsam, zw Relation, Teilmengenbezieung |
Fall 2: Wiederspruch zur Behauptung | |
Fall 3: oder: g \cap \overline{AC}=\left\{ {S} \right\} \wedge g \cap \overline{BC}=\phi</math> | |
(4) | A I/3 |
(5) | AI/1 |
(6) | AI/1 |
(7) | AI/1 |
(8) Fall 1: betrachte ich nachher |
|
(9) | Axiom von Pasch ,(5) |
(10) | Axiom von Pasch ,(6) |
(11) | Axiom von Pasch ,(7) |
(12) | (3) |
(13) | (12) |
(14) | (9),10),(11),(13) |
Fall 2 von (7) analog nur mit |