12)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Gegeben seien drei paarweise verschiedene und kollineare Punkte A, B und C in einer Ebene E. Ferner sei eine Gerade g Teilmenge der Ebene E, wobei keiner der Punkte A, B und C auf g liegen möge. Beweisen Sie folgenden Zusammenhang:

\overline{AB} \cap g \neq \lbrace \rbrace \wedge \overline{BC} \cap g = \lbrace \rbrace \Rightarrow \overline{AC} \cap g \neq \lbrace \rbrace


Vor.: \operatorname{koll}(A, B, C) \wedge A\neq B\neq C\neq D \wedge A,B,C\in E
Beh.: \overline{AB} \cap g \neq \lbrace \rbrace \wedge \overline{BC} \cap g = \lbrace \rbrace \Rightarrow \overline{AC} \cap g \neq \lbrace \rbrace
Beweis:

Schritt Begründung
(1)\operatorname{koll}(A, B, C) Vorr
(2)\operatorname(Zw) (A, B, C) entweder oder \operatorname(Zw) (B, C, A) entweder oder \operatorname(Zw) (C, A, B) Dreiecksungleichung, Abstand kann nicht negativ sein
(3)Fall 1: \operatorname(Zw) (A, B, C)
\ g \cap \overline{AB} =\left\{ {S} \right\} \Rightarrow \ g \cap \overline{AB}=\phi
\overline{AB} c\overline{AC}
\ g \cap \overline{AC} =\left\{ {S} \right\} Behaupt stimmt
verschiedene Geraden haben höchstens einen Punkt gemeinsam, zw Relation, Teilmengenbezieung
Fall 2: \operatorname(Zw) (B, C, A)
\ g \cap \overline{AB} =\left\{ {S} \right\} \Rightarrow \ entweder: g \cap \overline{BC}=\left\{ {S} \right\} oder g \cap \overline{BC}=\left\{ {S} \right\}
Wiederspruch zur Behauptung
Fall 3: \operatorname(Zw) (A, B, C)
\ g \cap \overline{AB} =\left\{ {S} \right\} \Rightarrow entweder: g \cap \overline{BC}=\left\{ {S} \right\} \wedge g \cap \overline{AC}=\phi oder: g \cap \overline{AC}=\left\{ {S} \right\} \wedge g \cap \overline{BC}=\phi</math>
(4)\exists P : P \operatorname{nkoll}(A, B, C) A I/3
(5) \overline{ABP} AI/1
(6) \overline{BCP} AI/1
(7) \overline{ACP} AI/1
(8) Fall 1: P\in gbetrachte ich nachher
P\notin g
(9) \ g \cap \overline{AB}= \left\{ {S} \right\} \Rightarrow entweder: \ g \cap \overline{AP}= \left\{ {H}\right\} oder:\ g \cap \overline{BP}= \left\{ {H} \right\} Axiom von Pasch ,(5)
(10) \ g \cap \overline{BC} =\phi \Rightarrow  entweder:g \cap \overline{BP} =\phi \wedge g \cap \overline{CP} =\phi oder: <math>\ g \cap \overline{BP}= \left\{ {S} \right\} \wedge <math>\ g \cap \overline{CP}= \left\{ {H} \right\} Axiom von Pasch ,(6)
(11) \ g \cap \overline{AC}= \left\{ {S} \right\} \Rightarrow entwerder: \ g \cap \overline{CP}= \left\{ {H} \right\} oder: \ g \cap \overline{AP}= \left\{ {H} \right\} Axiom von Pasch ,(7)
(12) \left| AB \right| +\left| BC \right| =\left| AC \right| (3)
(13) \overline{AB} c\overline{AC} (12)
(14) \ g \cap \overline{AB}  =\left\{ {S} \right\} \Rightarrow \ g \cap \overline{AC}  =\left\{ {S} \right\} (9),10),(11),(13)
Fall 2 von (7) analog nur mit \overline{AP} \in g
Ich denke es sind noch einige Fehler drin, traue mich dennoch mal :-)--RicRic 23:15, 8. Dez. 2011 (CET)