Übung 2: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Parabel: y(x)=ax^2)
(Parabel: y(x)=ax^2)
Zeile 18: Zeile 18:
  
 
{{Definition|Parabel <br /> Es seien <math> l</math> eine Gerade und <math>F</math> ein Punkt außerhalb von <math>l</math>. Unter der Parabel mit der Leitgeraden <math>l</math> und dem Brennpunkt <math>F</math> versteht man die Menge aller Punkte <math>P</math> mit ... . }}
 
{{Definition|Parabel <br /> Es seien <math> l</math> eine Gerade und <math>F</math> ein Punkt außerhalb von <math>l</math>. Unter der Parabel mit der Leitgeraden <math>l</math> und dem Brennpunkt <math>F</math> versteht man die Menge aller Punkte <math>P</math> mit ... . }}
 +
===Aufgabe 5===
 +
Der Brennpunkt <math>F</math> einer Parabel mit der Funktionsgleichung <math>y(x)=ax^2, a \in \mathbb{R}</math> habe zur Leitgeraden <math>l</math> den Abstand <math>p</math>. Man drücke <math>a</math> mittels <math>p</math> aus.
 +
 +
===Aufgabe 6===
 +
Gegeben sei die Parabel <math>p</math> durch <math>y(x)=ax^2, a \in \mathbb{R} a \not= 0</math>. Man beweise

Version vom 16. November 2013, 19:57 Uhr

Inhaltsverzeichnis

Faltkonstruktion der Parabel

Normalparabel

Es sei p=\frac{1}{2}, F=\left(0,\frac{p}{2}\right).
Die Gerade l sei durch die Gleichung y=-\frac{p}{2} gegeben.
L=\left(x,-\frac{p}{2}\right) sei ein beliebiger Punkt auf l.
Der Punkt P sei der Schnittpunkt der Mittelsenkrechten m von \overline{LF} mit der in L auf l errichteten Senkrechten s.

Aufgabe 1

Man beweise: m ist Tangente an die Normalparabel y(x)=x^2 in P.

Aufgabe 2

Man beweise: |FP|=|Pl|.

Aufgabe 3

Gegeben sei der Punkt K\left(x_k,y_k\right). Man beweise:
y_k=x_k^2 \Rightarrow |FK|=|Kl|

Parabel: y(x)=ax^2

Aufgabe 4

Die Lösung der Aufgaben 2 und 3 hätte sich nicht zwangsläufig auf die Normalparabel beziehen müssen. Formulieren Sie eine Definition für den Begriff Parabel:

Definition


Parabel
Es seien  l eine Gerade und F ein Punkt außerhalb von l. Unter der Parabel mit der Leitgeraden l und dem Brennpunkt F versteht man die Menge aller Punkte P mit ... .

Aufgabe 5

Der Brennpunkt F einer Parabel mit der Funktionsgleichung y(x)=ax^2, a \in \mathbb{R} habe zur Leitgeraden l den Abstand p. Man drücke a mittels p aus.

Aufgabe 6

Gegeben sei die Parabel p durch y(x)=ax^2, a \in \mathbb{R} a \not= 0. Man beweise