Basiswinkelsatz und Mittelsenkrechtenkriterium (SoSe 12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
 
(9 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
<div style="margin:0; margin-right:4px; border:1px solid #27408B; padding: 1em 1em 1em 1em; background-color:#FFFF99; align:left;">
 +
{|width=90%| style="background-color:#FFFF99; padding:1em"
 +
| valign="top" |
 +
 +
 +
 
== Der Basiswinkelsatz ==
 
== Der Basiswinkelsatz ==
 
=== Gleichschenklige Dreiecke ===
 
=== Gleichschenklige Dreiecke ===
Zeile 9: Zeile 15:
 
===== Satz VII.5: Basiswinkelsatz =====
 
===== Satz VII.5: Basiswinkelsatz =====
 
::In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
 
::In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
===== Der folgende Beweis ist für die Schule ok. hier jedoch nicht zugelassen =====
+
[[Schulvariante des Beweises des Basiswinkelsatzes]]
Es sei <math>\overline{ABC}</math> ein Dreieck mit den schulüblichen Bezeichnungen. o.B.d.A. seien die Seiten <math>\ a</math> und <math>\ b</math> kongruent zueinander:
+
 
+
[[Bild:Basiswinkelsatz00.png| 300 px]]
+
 
+
Nach der Existenz und Eindeutigkeit des Mittelpunktes einer Strecke existiert der Mittelpunkt <math>\ M</math> der Dreiecksseite <math>\ c</math>.
+
 
+
[[Bild:Basiswinkelsatz01.png| 300 px]]
+
 
+
Wir werden jetzt zeigen, dass die beiden Teildreiecke <math>\overline{AMC}</math> und <math>\overline{BMC}</math> kongruent zueinander sind:
+
 
+
 
+
[[Bild:Basiswinkelsatz02.png| 300 px]]
+
 
+
Nachweis von <math>\overline{AMC} \tilde {=} \overline{BMC}</math>:
+
 
+
 
+
{| class="wikitable center"
+
|- style="background: #DDFFDD;"
+
! Nr.
+
! Skizze
+
! Beweisschritt
+
! Begründung
+
|-
+
| (1)
+
| [[Bild:Basiswinkelsatz03.png| 200 px]]
+
| <math>\ a \tilde {=} \ b</math>
+
| Voraussetzung
+
|-
+
| (2)
+
| [[Bild:Basiswinkelsatz04.png| 200 px]]
+
| <math>\overline{AM} \tilde {=} \overline{MB}</math>
+
| <math>\ M</math> ist Mittelpunkt von <math>\ c</math>
+
|-
+
| (3)
+
| [[Bild:Basiswinkelsatz05.png| 200 px]]
+
| <math>\overline{MC} \tilde {=} \overline{MC}</math>
+
| trivial (oder Reflexivität der Kongruenzrelation)
+
|-
+
| (4)
+
| [[Bild:Basiswinkelsatz06.png| 200 px]]
+
| <math>\overline{AMC} \tilde {=} \overline{BMC}</math>
+
| (1), (2), (3), SSS
+
|}
+
 
+
Wegen (4) gilt nun auch <math>\alpha \tilde {=} \beta</math>.
+
 
+
w.z.b.w.
+
 
+
Ein schöner einfacher Beweis, leider hat er hier keine Gültigkeit. Warum?
+
<br>
+
  
 
===== Ein im Rahmen unserer Theorie korrekter Beweis des Basiswinkelsatzes =====
 
===== Ein im Rahmen unserer Theorie korrekter Beweis des Basiswinkelsatzes =====
 
Probieren Sie ruhig weitere Varianten: Mittelsenkrechte ... .
 
Probieren Sie ruhig weitere Varianten: Mittelsenkrechte ... .
Letztlich hilft nur die Winkelhalbierende. Damit wir uns auf die wesentliche Beweisidee des Basiwinkelsatzes konzentrieren können, schicken wir ein Lemma voraus.<br /><br />
+
Letztlich hilft nur die Winkelhalbierende des Winkels, der der Basis des gleichschenkligen Dreiecks gegenüberliegt. Die Winkelhalbierende muss dann die Basis des Dreiecks schneiden. Diese unmittelbar einsichtige Tatsache muss eigentlich bwiesen werden. Wir verweisen diesbezüglich auf die [[Lemmata zu Winkeln]].
 
+
======Lemma 1======
+
::Die Winkelhalbierende <math>\ SW^+</math> eines Winkels <math>\ \angle ASB</math> schneidet die Strecke <math>\overline{AB}</math> in genau einem Punkt <math>\ P</math>.
+
  
 +
Hinweis: Im folgenden Beweis berufen wir uns auf Lemma 1. Korrekterweise müsste es Lemma W/3 heißen. Sobald ich Zeit finde werde ich die App überarbeiten.--[[Benutzer:*m.g.*|*m.g.*]] 18:17, 21. Jun. 2012 (CEST)<br /><br />
  
[[Bild:Lemma01.png| 300 px]]
+
{{pdf|Beweis_des_Basiswinkelsatzes.pdf| Hier}} finden Sie das Arbeitsblatt zum Beweis des Basiswinkelsatzes aus der Vorlesung vom 28.06.2012.
  
====== Beweis von Lemma 1======
 
später (Wir haben wichtigeres zu tun.)
 
googeln Sie: "Geschichten aus dem Inneren Gieding" und Sie werden fündig.
 
 
====== Beweis des Basiswinkelsatzes ======
 
====== Beweis des Basiswinkelsatzes ======
 
<ggb_applet width="1272" height="830"  version="3.2" ggbBase64="UEsDBBQACAAIAAqm6DwAAAAAAAAAAAAAAAAxAAAAYjVhMWU3NzNjYjczMGM3NzA5YmE1ZWE2ZGM4ZDVmOTZcQmV3ZWlzc2NoZW1hLnBuZ81XaVgTWRathNUoSwNKIzTYalTSYFpFwSUsLo0Ji+mQEhFBVtkJKpsBkrjS4JIeJNCiAqKBWCEQFTACQpBWGhhhCCgoWxQVkC3soIFMJei009/XPfPNr/lTt+67VfdV3XPPee8lEZ3tNVDLUQAAaOD37iYBgJImfP9KHQlfh19G/QMANFfid9uRY18OdXr75JQvV/FqHYxuWzTgtTT80Vc30mxPbctIFY5LMxq7mnbiRnBnWrZ6IIC9VltVAADSARiQMpCNQQAcwp+5wqtgvzLAN3DPJ2zPT1wbEsTvHrBBqCFcWY4kW6GdEERf1tOOsAU34hEINfIn51iOwlm7XDtCrIWkBTXmuTRfpM8cDce2hrT6/QLnXiG2DUOMODQRmaq7wt4vToX8UpBITXutGZ6pefCP3WnHItFgEq42FtywY/IN6t1IJVr5Gk8DhVKRTm26cKmnvceAxp/lihKSQqmrNsy93TnicXmC27PmFSWXWLBoJvYqRIBS+JRVg1kmyeTnRpK2DJEVrzHsLBg0Nez4jXtVDA+fUXZdKi3qHlnqvqUSO9+0NaQsgLlC/MjYk9txeIaeHuMh5BCWktlr/ft50ITfwMfmJVduPcjrHWHG7fPvDwGDTlgmfPgtj0JRjqd7y6LB5Zl8RzClbweiu11DUDtNvyyYj6WD/ad5I2uCTvbPbloWHdk5dR0q2oG9swmUWG4nozW/njoF4nOOq8RntZcmomaauQE1OsZjPR6bh7WTjGbW9v622nwDLjGrs9zNsZB7rnIjfXVb+Zb5yRpfpqub9T6o4UycGa0ylRo/xa7Vp2XFzc7ll1PyukXx1TUPhpYxD6GYAJhE8s6aO/vGdc23B0N/Sg4zvBbvnhS63rM46NEZWi86pQbd5IasqNdaHJufdnEkd4Ur01JEKW1wasbe7Ky4W/6zLPTt09VPrXE3LwroklHfq2YcrGtL3uFDlzJaxn9V7Yjc6aRf5sJMlC31NNO6U/7QPG8a8aQQ3XW/qVNcP/DixSp//TQQjTqXMBWttd6hIelVZeyzmbf2zdalNRt9p2UvzNq831nTklqObr6+m24j/jinXldb5j/7w8V8DK/z/YHOxqgNeJkXdb0ZTfueycF/MHP01bwf/tLQ+Wb87zIfWXmVYcgY9U5N72F11T5pmMHsmsutzykgu7GrS30mrdq6sXrsaWX8oxN+mfaUE5NHk+Ptx2XNszNoncNpfR+U5teCQQ+KUgWIPAxIvWHgluOZn4dNL++NqcllBUSfzaBmvignDFk64SpK68f6fSjSBC7mNuERDaVPb96QfK6v2PieQNfEo4awY6LfId84fTeXIHNnHXFwoOxHW4q3WOMKz7OrH/t3RrGJE0q3wnIt+x45Efp73ZYIav0jgm1Edduausno+klIRKu2picjQdO0gUJXdnFPSiDYL+OS+EUTR8C7vLiPzePLw8M9Kd9WNV8Y7xldr/6u9nJvEn12eqWlVCQdnXQ6+RhKccqGRJnV1mVmhLmxX6chkt9IzzRX9OEovgiasANRBUPdXIK1WfbdfgPZDVWTcqtLmQ7tjltcuuj2oXMxHbmN9wSI1oaCMVqJn70JU9ZwvLUglFPnwpIG34GKevnYmNeex/ez29Zu8OcQKN/If3WEzK5lzQ2AtfbE/RtwvZX9AqldY2HRO/qqipuBkyfS4lg5Vx+7Gh/uuuzgITsCEaz5zuDLqDYX2T7JD+BBM92Hd12DRh1auY2SYYd8I3nGbg7htqw+ia5TY3lQgM9IoFof2enTTnytH5Dp+QKXkNlXMty/LX7Q2f3NOMJHVgGWY3j0J1WbixOCQ4+E6dOVEd1BbbruFdXYxp0WMqeWbubSvfEde1devReV27+YLtXZd2kx2P84llcRszKLq+cRTGKVWFp2f7C0aDbBWVr76pZvT2k39m3UdZtzfnhdRLknqdWtjGmNHJc57/D2sZvvpRTiTjFGNg3eDiil+7mNmZ5uTLoWdsWz3ke6K6DmsCE+zENamL7XON2RS3C2WCEudynNKOb615xVCBtNnJk6wyuso+BGJgXKh0CkIymZMNzLlW555sl0gDVUuPotM/jxfMn44EJc2Ug7AqxdrSKXU7lVNoJHFRL7SXgRC6OcB7Bah54B0frXGQwlkIfZ2gRbKAVSVrdaIYZS8Kg1pv9u1a3UBQtii+xSk4oy9+XlGsokPR2eBa0Ftd8jyGhb4cmXyK70nBvGGudetuivW5jokrHE3eVgS06F+ds+gkK+QUQlK6f2FImYtjGSfZHMHo32TTu76bIeGe21D8HkmXokYq+1f7Of3Z9rBi6SLwqEZbkSYVboUWbBwwTflHdUDy8lEC+8Mc8wGVM9RO2lnjMfxn5DruJN2lZBq8X8RIbJUfeYYOJbK/1CI3JtFoIowCyyIptIlGgHbKXa4/l8nA3n7ndxtk3w08QYIfPDV6mjUFEpZWCsKYn2MWV8vFVly48sZaNoI4kRFsJcuZUNv88hRMn5CcDLE5sb1mlbhceIszFDeZhZPqCoqj0R6b/mNuM0VJQFFXF1NQZjU5AQyXmaJUkaTFhAREJdKGQ2nFNRbV0NufNF6bNhqYAdZAH8hBdc6y8tg3GawSXI4RAe4eoAwh8OgMeaFqlbEZ99TvTfvLtCnCDEDs1GBpeOatk0DL2lDmUs0bWVNw7HXJxguvx9kxfHKeEkSdEsr/oQlZvZe8zft5MuFdzCIJCa5KUSd9MMs3Uq/qa7XF/aghldwReMH8h/SqIeG+oEM+1Vx3ABpnNk87m7HYEWeDsQSWa/h0ix7qN3yi2sJ/zOf6QX2uK2cw4VLg6V17UFxqWTUVYUpm/gU5Vfx388xz6NERQbrzsAIzClLVlFGajQ4teefPdHNHtoB4S+QdLRLIP9bZkm5BcsXHYgqBPB2S6umVevm88OiOkWfSxZb3K97z52qw3dw0sXbhrvGkTjaI77h8xwJTMjsrwdGVCkfvs6saqR/LZo483QAVVlIysqSPDoubjqaaIKgNQ0KsHsoZJaO9amMbOV4WA0iDoC3qa3/1oZB8hLCi/2u/fVVaDCU07BhYhVWWh8IutaoKIxklR/d/CfGCrva8UOSF7lBftnWyOIB++pDL3B2j1r5eRZUAkGpEBDwUj5pF9aOUM/Yz6NqCzqbb7d/8RGanU/faA4ZKMjIJ88u4QxzQ7k2J++sWVShaCYKPGmmvR56rJiDsVha6miGYmgkMIOvJutl8pe4hGkBAZRuRvq667gUZAO/yaj5nlqQbV+w9AwJCr6umtk+7JAhzWmHAIDIu8BS4uc+Iypthbjedf483GRQ0OGly1aB5CGHAJSc1JNGmEpTgGDzH463P16XmS3tOOgll4+HIlTn/G+HzXdHBL989aGx9+pgWMBgF4BHHimJv3JZJm2G7Gu+NGUNLuuYBCxh5vC2NWJsHltT1RNXO4IPUtwT2c6T7SnX8uqXM9PkutAD6M3tmkofl81VqhSH7SA9cT3+dg5ze8+8VhyDCtYFOBuKY/okdliaqMCbw7hzsA2EzuYWhFvIAtnyN4yOb5AFO5swe/BoziEE2WkJrpZ6wKjCZ8Z/YnE/yujS/5PGE0GqR0JFvK+0/mXFuNc2Udj0hZ+Bp0sKsLgXrw29oj7+GT108lSoSoEIzGHsHmjIfhoF3Onc8CgRFAZSVS5/1xJBQap2hhJE4R1+m6/oME16n3NOo2Z3QSgXNGIxPdKtHx4A2l201xrUyOqffw0puyumh4PxjsKbhETu60GzvV/Kssf7ne7RCzNwyAgHflHpRhG2P5NocjPSKxTcRdu1Bjd4xnCh4hs0NTzevwBQAH+TnDsq1Q5MqLiiajr9Gngd/bZCqfJX66Pf83e7+ECycn62f5OWm0JD0QDjItt8FoMWE2Q0lyA/3BOysY8zA7xMcHRwrENWCBiEIoMajxPbdns1NuCBBILCd4/klgAAAb50Aac4JxkNLgIILIyj8PnOSJr/5kBeFGFc6AH4G6D09bWwaAC0IKjiNz+i5nh2Jfjf/hIvWmtCN6eCn/Nmhn40Ajg9zjvLtjpdeqfUEsHCL1cAqreCwAAWw4AAFBLAwQUAAgACAAKpug8AAAAAAAAAAAAAAAAMQAAADQ2MTVhNjAxNmMzMTY4YjNiNjA3OWVjMzU5NTAyNTRkXEJld2Vpc3NjaGVtYS5wbmeNVnlcU1cafcGNRarWBRUFuiCiwkMGhKJsFQSMbOKCYnigZbGVgBgIiw+QRSpMtT9QArIEsEAoSlARNIEERHQ0LCOLyBIIINUkEGRJgCcJk5eAZRxnOv/kd8+95373fuc793u54uJkp6q8WRkAAFUHe5vDAKDAk46fKipIf1UmDW8AgLKZg431kbCuEbbH6d/t1y1zedZASFca9Frn9PXI2mI1nuqv+RF3qPjql+ll1zIVnnNXABwXp6ilQAyiAOQyAIACfjp0sYa/wwBHBluRFi+3vSd+jA0l1i/dInHGHIcAzIo2tVbV1UFW8G62FHxmqk3NCsb8OTPdEv5On9kb1TOcR+8/1VwZH+PWnZubhxiKqDvFvr5zs4LsCp3WgPY1Lu9NUr1Lio0CCnnJyNfDIfHiKdB2RzuJWpE+u/xCOPF1INaQXYFf2dwnmhoVGtOPpod4toRvfEqs1OI81hBY9uRMQyTrkSMUsHvdRmFB8RURElJ5xOtYCdhBdpyeOBhoXZMA05HgaKsMN8ii9z2obI6Dzwbkm9ud3L/kdDaSIjnV9cGhGHwc9bMRKwsZD4c3NTUbp/vTlfisSYsx00GvoV8aCN1n8tnRxDG6eFYREWMHPGJT8zQgC/YecyxiWpC0RuN+NPsozZz2U+gz/t3WUT9venY0dkxpKdtgW2VWwGGFXv/Xt8DtvX9TcQ2OdRQYlXdWHv2H7/htWHMbIbtoO1N/MwWk9gWV3XEWDj2oJ8J9ODy9577IxoS9h+zfmRZRfR7BNW2Ia23nzGSfrdUzd8K/a4gcE0re4gq66+ZUiDtG44T3TjR1lGlOra/oHt7E5EaRza0xc8x4866eOFxCqcFsql/j6JeTdYSVexzbRsi2tTniZOOc/Enat/Q8JKU7zLAE7B5JvIlXP1RuM85P/mL18mxtTyMl30axZoOf99j5AbDKAl/m3ZgDEiMv2hm0DTQaTjhumLJuVxPavg6c29G0v3zMb/+6FW/gyXzqQ9ga2VofaMaMShpnlx+GWrTTH9d+0zqSu/eHjKH2H/RMcaW/XBtu+Mm+XOd4RJb/5etNurvYGvpPZn8jbkhLJVV4CG3hNSK3h/Ynr7rusSGHJL/ZHhxaXRTUGkgeEIflZiBf6tVSwADHcsIVvU7xzImwVGbFjTyy5ill5whdSydDgi89uWDCY8MrtzY1YUJInYblky+E2iR+O5+V2WHrJtR2j3WFbmb6W/Yr3WY1aoWl23lkVMSGR4ZPmc7Qob1x/bixEdZaO9gViocTyuzoOwrWvukoATMucF9RwUBPtTvtJC9Nd/hsRP5QdHFtfZfGIGff5P21f+DJjSck517Onk+Js9tfbjK5b2RPZKRkgjxYFhR7FclnKH6o9F7llPd8+PC5u0hKZE4InzXAz69GDLuXHIM2Z/qP6TS0QISLD8jTO8f9KLssnCIEWFE8J6G7ddChQKwrU2W0zjNCZzqf8S1Ll5z1IeXi65CxNQw4iUhN3sbHcgO0ogtijH2ruBUzNpmi75WL8taJnHsFmGo4a7iYPmH8psc1v8Gv4EJ0szYEpVmOit3Mtr59mXZ5d7QK6lGVIuFlot1XSZaYaeTnkP4WlYRzB/i7J3QkQreqcNyWcoaNR7BgKuORABvqcAAuDkyDhcSe3lOvzpoFTUZcHtB8bqaHe6FP0Q2UcB8bP1AmE3nPpudUVrm7H4qKErboKYZleoPmLSMpB+sTV5bqmYxudpi0eOQyNHgLU+DWL+HqJlGxhdeYyGkaRqFUUYiNLPNU4yVzlxeq36h+piYx5dauyqxAaPIm8+Jt4tbZ1dgSKlbWf/xEx/p6uV/dYegL6wlLlm5xgQ6ZWNVYS2v4+d7V9TsIADfKEAV3GLMZt9DCFtGkamMWwmDkMaVuWrao36Hk1e+ZpeDbPLqn0kNNRynzEo/PuvUoS9oMay7FtZHCr3w8H+2PUiBc5gKhq7KQraoygPbNhcg1hLVB/zGJXsen2dpAVFTzx9anhCVokEX3QoGLNPSixGUrn6EZsOdppvYwBqDEt6vV8FT++Q5VWdE0l5GOj4lZIgcUkKeixYmRFeMLCliorsXJZVDAj+tyclzMnA/83So2QZeDN81Edx/tIN11lty0tryJogevSPzHrJI7h1gG6mob5SrMTIkM/36W3Dm7OoW7nKeSy7j9LtTgOXpajTePFSD04afOJ+TTLronTrw2D/TOMFk6RY5ysL6/6Fc0t0sv+KyCquFW3DwpW3CPNRQ6T7olMBRllj5Jx0u/cjwWlcbSPdM9aF+oLk0DuYcnnu80kwY4yf+YjxdN6f/NW/qcgYX1ebICwx0CgB3ewmVSWxnRFkeYZ0i/cAp/LbMWJ/oE1LTfBKc87ymaNEU6oW5G0neG6Ry3m416gwRdJ0k6cTk+vomS07RLiAIF3PlqE2oYjr1wKGLSP/H+goiqH3ZVzUvwY6PPs2aNDDkwE2juM8umcc55ok7O7ULGJ04ldtKY89wkPNZAXdPKUH7cDX5yO2rqwTYS/+U3HejboFQw9lkEGwnXy1EVI14zo5d/D5Tr+0n2shsukoLyX2jc5XJQ48pTAay0bzOAY1DMgeOf+vjzT/szb3Zp1VUkWIPWWiyX8kwbySNctvHqYUhjSMY3PQA/uk7CbwxUPSBLhMnoecGauQvcQivc5imlDdnJeDbwI0Kan7dsO48K3h+XeaANgmLloyMQVNh8sEigUycrcEg76WL23YWKo5omoyLEyK2zhfqnDQrV/80Tciti/upRnsOhdhtzRR8y0fzpNQCQlhtoUwOkTeZ/DCVPox0r9X9rWtkXI/0zCTjYOtmUfu8V+y9QSwcIIGKtYUkIAABzCgAAUEsDBBQACAAIAAqm6DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3bcuO2Gb5unoKjzuRqzcUZZGOnIzvbaWY23Uy8XXc6O7NDUZCMmCK1JOVTJ2/TF0hzm7vc7zMVAA8SJVIiRdsrt/GNRBCEgO/7T/gB0Md/vp0F1rWIExmFJwNog4ElQj8ay3B6MlikkyNn8OevvzieimgqRrFnTaJ45qUnA2yjgS5fyK+/+MNxchndWF5gqryT4uZkMPGCRAysZB4Lb5xcCpFWyr3FrQykF9+9Gf0o/DRZ3sga+TacL9SvpPFClfmz8WuZFJcvzQ/OA5l+I6/lWMRWEPknA0ZV19W3dyJOpe8FJwMCshJ0MkBrN1UR1ncvo1jeR2Gqqy8bn6gSy0rkvVBPAl12/NIM9Fgs/ECOpRfqwZh+qEqWdSPH6aVCD3Gk2hRyeqk66yAna86Ponh8fpekYmbd/lPEkarpYpszl7oMui5FxOED6y67dYSI7XKAgcMdh7oOo46CUfVZdYa4tksAg5xyDl0OCVWPNd8zvy6uz0WaKjoTy7sVS6CnsRxXLr5NTqNgWTSPZJieefN0ERtZwHnReXqnf06BF+txDsNpIPIyNXj/UvhXo+j23IAHcdb027u5ecR0aDQ9i4IotmJNixrANP8cZZ+mju5pWQuYOsDUyNvQjZb3oYtMDfM5yj5NrUCGWdfykcNi1BAUPyMTSxeoxrUIl4MPvJFQIjGwFqFMXxcXSnSu8qHC7IG/LWYjpTurwlO2CR+qzeOXa2J3fCXiUASZbIWK20W0SKxrLcTZb5mOjIUvZ+oyu5FD4mm6/q46kJWOxTQWRcczzcsAM3fBqvyuFR+/LDqh+5CovvqpMiFqPKkey6m4EQqHsUisUy+RyY0Mr0SQeOm9SLT2p0rzTgYze2oPrLGXqie0NRGBmAmle6mRl3AxE7H0S+TOlXDpVoLf/h1OxUB3TfVnkfeK2Xl3jS2KjFkpDEjewJIkdbtBvJQBml966psNcyHy7pSJWcXDtPZdNM5/OK+XBMYWzaQyo1Sb0Zl3qyVNf/VGSRQsUnHuK7TD15HvpcbcZr3LrYcySLqueogQ/eVOjQkZgzyRt2KpmKs2a4XupbCnl0qmQpEkRiPTVd3zQiUShidljea5vU/mQjdvvhe1rbkat9H78ieUGGb0bBBl7EKJ8nDQlwVjDkoewFYe3kwmiUg1akcYG9AQqqUpf8hgmZUsO2IkPNGNgBz5I66/3GeomDqZ8dPm3jyMu0By+pkgcTNAWA9AnL0B8aPZzAvHVujNFCDnYqrLDRBSO3fLA1pWLA9qfLLBL9Lihp+1lrexAW+St1YA6A9aq8BDmYf2YkkyFraRsCmATg43Le1aq9GJj2FWJ8l8ipypQMmXaQlwoLX62zBVHkYYi73pOK6EmGuP/SZ8G3thoiO+qnw0s3wmYz8Q9SSvme91xsfbGVdOZsUVjPfku+qKH5LwDUrb0SWnIrxWXYvixLJuQW6F70AuCPdFya0C8CiTDZgX3cMVZVRWPZa31rCoPyxqDZEOw8w3nDc6JEVbQ3oy4HaD6Ci34MuJ9Pdg/LQV46IL4+J3xjswzvkm484DMV4ajzXSxxnpeg6HVvq5QvjZdsKrPvNsL5/JiOFSf4yyj+4GG+YeD5J2JruI1o6QTRF3GAGEAgAIAuTRPObZBrijbh5zdAgeE9YTgAo8t6rbkoAjYhOOIKYuJa6aTzvmcZJ7UOQ8Jw9az/ppE+teN9a9w2U9D3v6MH5UUM5tzjlwOMPqJmOYPx/+h+F0EXjxqUyMj2jSfmNjN8PmyXZx0ACUNE4O36MuCYe5jQU5w4bqhyG1u6ebZCz4G/BfdHFwF60dnIqExjKbtavab/LKVw/o/bYgj1Hh3sxURIPv7OfQfvDu1oA8y4C82ADyZjuQsWqpgOnmYU1aa6z7zgvzWWHrGKPG3pXKALntOA4l2IHqroM38p+Ha+86+rtpN383bRYOnZtuKR0rI60XD7kpHuupbQofQhkf0O9tjP8gBaEx3L3sJgiX/xeC0DLk/fzUV8mSM2+6BPlUBmNo6JpI1aVMOkbUg4Jz7I84Br4ScnfkUeGxse+M6cRl77MFh8S/FDPPnofTrFMyPPX8q2kcLcLxRo+T1IvT77ULs0Kz5mIMuTG2XCvQ8q+Y3gFUndD1DZ5WOrPbtcAdoXSbzG4XDtA6B4RB6jEAmY8hc0Z4xAB3ha9lECBKxq05WFnGbaaAVCjIDZ3OZPXmoEmlPwMFt/NY9Vdbkbw7b8VtqgyEunEy+PLjIkq/2raSltUwrVbZTFUzg2qbDwjDrkndJgx6QT0RsZwsNwaYBWI2KEwO2BCILBtOHbD6B3M5sHFFDHaDiiqgvotib5GoSOx+EU7bo4jao1jvH358NIjXgIPELnUG2MRpBKsy4FEUBcILy/H8uL7Iumo9n0aWlgGzg3jm5LjbDMRuQcAVQfCs94qpqTVqLwS4rxDUBAkPJAQyee29Ff/YYmWzJT3MStEAZE299pETeUhyQklmJIizZcltt5yQipz8VQbBJLnKdjpcGUrvF7GVGefJb79exp0MCTlMcwxKc4xqJcctJYfYmHQzwLSC54XxYpdeMJIiFqHq4I11rR5oDyHtq4a95vRdbLFrK0nMUXO7gcYqoL03u3es4dlpe5jY4cLUzlopT4ZL+Eiz0G01UFeHZKBYPltDgPYxUHwtTJzGv/0ajpUZsvQ+JGWwqvaqvcjw52ucakJFatNuOudUcH11K5NUhPeWnr28kspSLVI5vRIyNTBv2LEOODt9VTN4OgvmVqLwXB+ZDZuj8K36GByWPhb7pHoFDO5DzDDc56p7iBVJEtg82aif7oK+EblqoacmzT63k1Pt0tqUE4LuWh5kH32bHZa+ZWsfbi91g+tpkktvMU87KRs80KzILm2DyGasxh4r3asKEW+Slo01540tXGfFzkyz0jzMQVjm3z/9J2uzKQFvQtUSSFV7TQCB7RAImMM4oIy7GKBd0rhrjS5sIgqCTarabu7ukmT0Yn+5Fqp/NCsNgujmBzEJxK3BucNGgKZ9dcOMlM1FkU8/dyLl599J2UlKg/FBaxMzPYTccb0fidTrYIR6JxUbMX4q54VtVlqgPQPC8JAclINo5qC2gNNCRqqZxr9EwVToLJGl4sK+UzTYIQl5SJ5rmUBitjIwjgOBi11MuQs7ztJgNT/3KlFXaqamZmGpdfHC4HvuX4YyVcYxvEpNcunGmqlpWweUO6Tp6lUzesIZGmeEqqmMixxGGSsObWC0xBhw3BHkatLufXQtYm11/zU8/akDjL1TdY8HY0sLx21CKEbMdSHjRf5GybBDOMUOI4Rw4LA9g/PokGxfMTi87RhVC8lhW7NTpTHsIEUdMpkHZvIo5dDFDmSOQwrNdGwAHBdylxIHUtYcqjfgW83+vRYq4LNgBzQ7JPnqdXL+VKbNzI0ZpZAjArGKSgsAGXAZhtiFCACX7rl0NT8o5cvjKOzwdsq3e8pQ3TG8udPy0y8fhp0mDbr+xrSBI5cjZRgZUjaSMdx32vBxE1sI8lPeANWciHz0qYP7CNO5ix27uRXWpx25Of2dmx6zumrq//3UU6h/GBbzuuyyw9ob7J3hr8H6ibcKQJdgAgCHmGBGym0DDCOAMXKx8lyus6ft/XhItrfYNkC3HftqIUPVZYAbS01KNleJzHTk0y8dRKnDwkC9KMVP5q+x8syAK+9czO9yqYE20m9IQS5xHA6w2zzj2yo18SFJjX7JSyY1Ww7Zd9303HgsItnuDdY3PSdPs+k53YQVUrwCrLnaV7oe4wzEAWyArt+kCBrm22cXPxVeaLWsw87F3ktkNSw/qSvitusSFWAg6iJIEYKsNCsEIpeVFmfPDGR6SGaFkmwiQEnLiUCDPFXXyNJYXksv6CA1HRbI6qVm8WReh9qclREJd5bS4biYYkghgICDPYVjcUjCUfoc0nIjbNXnfB8Fd9MorJ8nXjQtLb2Tqj3/CuZHHz/ArKJnvuCTwc0HuN05zfOfLcApG2wd8/cQw+tNFspzOSA7LWk+Sy7oBhdt02Hb31Pz4aHH235Ie/vd4pU0z+VA/Y4j8HtT0OrsziNxUH/eqwh+ntX5z+303DxHDdl+KvPo0BWm6h++k3Hc9OKBmw2/MPzSm0fJV7tsf+UFcfkjvZ3nrpei4Xbsla84Y7Zb/evz+pZaGC+aYLzoDuNFE4xtXtDQ6U0BLXHUbwqo24Db87UBtUCeNQF51h3Isz7y+BhAPtILhRoCv3z0WfhXXqAKlLWh4OqD/uqDXnmhA8N2hNQHhyvMPIMQcQu9HULERxlzHyfY2oyqyTd3CHS50n1E0aujYo6Oaw3rEeJr5UUO7SC95I6wshdtjxJatuSt4Z0SDXT+j0Wbz1XZ1jjjbmWGdrT+IhB80BTV565Q096ji7PNZOipKuyQ1+q957LGW7RP62zluG02VG88yneUQAiLs94qBHMxZy5GCGGtovvlu64/T75rFZiaZGi/A72ouh8TvrDQCwu/sM4vzjtITu/T3/ePJjmbGVHoIGUBOCQMUUJ4KSOUry7q7pkTvT8kGSlzonzLGwRbyEh1V+lwkVjEmkTBNLUW4UymqQhGXmyNpbCWB07sL/8IweoWtz91kKdHPwneRWSIzV2gt4swChmgqFjvx7ZDqcMQYI7LKEXN6/31qFa3kX4jJjLMFEPvBfwmFlLF+non9FSNPLzvgF7vnaWjD/CpwKU2oRA4KgCg0CEYFCsUSk2VPgIVanEHALTnCedRnjc7EH0kKItIOGxps1+u/hcJfV38x5mv/wtQSwcI8ERz8voNAACjZgAAUEsBAhQAFAAIAAgACqboPL1cAqreCwAAWw4AADEAAAAAAAAAAAAAAAAAAAAAAGI1YTFlNzczY2I3MzBjNzcwOWJhNWVhNmRjOGQ1Zjk2XEJld2Vpc3NjaGVtYS5wbmdQSwECFAAUAAgACAAKpug8IGKtYUkIAABzCgAAMQAAAAAAAAAAAAAAAAA9DAAANDYxNWE2MDE2YzMxNjhiM2I2MDc5ZWMzNTk1MDI1NGRcQmV3ZWlzc2NoZW1hLnBuZ1BLAQIUABQACAAIAAqm6DzwRHPy+g0AAKNmAAAMAAAAAAAAAAAAAAAAAOUUAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwD4AAAAGSMAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" />
 
<ggb_applet width="1272" height="830"  version="3.2" ggbBase64="UEsDBBQACAAIAAqm6DwAAAAAAAAAAAAAAAAxAAAAYjVhMWU3NzNjYjczMGM3NzA5YmE1ZWE2ZGM4ZDVmOTZcQmV3ZWlzc2NoZW1hLnBuZ81XaVgTWRathNUoSwNKIzTYalTSYFpFwSUsLo0Ji+mQEhFBVtkJKpsBkrjS4JIeJNCiAqKBWCEQFTACQpBWGhhhCCgoWxQVkC3soIFMJei009/XPfPNr/lTt+67VfdV3XPPee8lEZ3tNVDLUQAAaOD37iYBgJImfP9KHQlfh19G/QMANFfid9uRY18OdXr75JQvV/FqHYxuWzTgtTT80Vc30mxPbctIFY5LMxq7mnbiRnBnWrZ6IIC9VltVAADSARiQMpCNQQAcwp+5wqtgvzLAN3DPJ2zPT1wbEsTvHrBBqCFcWY4kW6GdEERf1tOOsAU34hEINfIn51iOwlm7XDtCrIWkBTXmuTRfpM8cDce2hrT6/QLnXiG2DUOMODQRmaq7wt4vToX8UpBITXutGZ6pefCP3WnHItFgEq42FtywY/IN6t1IJVr5Gk8DhVKRTm26cKmnvceAxp/lihKSQqmrNsy93TnicXmC27PmFSWXWLBoJvYqRIBS+JRVg1kmyeTnRpK2DJEVrzHsLBg0Nez4jXtVDA+fUXZdKi3qHlnqvqUSO9+0NaQsgLlC/MjYk9txeIaeHuMh5BCWktlr/ft50ITfwMfmJVduPcjrHWHG7fPvDwGDTlgmfPgtj0JRjqd7y6LB5Zl8RzClbweiu11DUDtNvyyYj6WD/ad5I2uCTvbPbloWHdk5dR0q2oG9swmUWG4nozW/njoF4nOOq8RntZcmomaauQE1OsZjPR6bh7WTjGbW9v622nwDLjGrs9zNsZB7rnIjfXVb+Zb5yRpfpqub9T6o4UycGa0ylRo/xa7Vp2XFzc7ll1PyukXx1TUPhpYxD6GYAJhE8s6aO/vGdc23B0N/Sg4zvBbvnhS63rM46NEZWi86pQbd5IasqNdaHJufdnEkd4Ur01JEKW1wasbe7Ky4W/6zLPTt09VPrXE3LwroklHfq2YcrGtL3uFDlzJaxn9V7Yjc6aRf5sJMlC31NNO6U/7QPG8a8aQQ3XW/qVNcP/DixSp//TQQjTqXMBWttd6hIelVZeyzmbf2zdalNRt9p2UvzNq831nTklqObr6+m24j/jinXldb5j/7w8V8DK/z/YHOxqgNeJkXdb0ZTfueycF/MHP01bwf/tLQ+Wb87zIfWXmVYcgY9U5N72F11T5pmMHsmsutzykgu7GrS30mrdq6sXrsaWX8oxN+mfaUE5NHk+Ptx2XNszNoncNpfR+U5teCQQ+KUgWIPAxIvWHgluOZn4dNL++NqcllBUSfzaBmvignDFk64SpK68f6fSjSBC7mNuERDaVPb96QfK6v2PieQNfEo4awY6LfId84fTeXIHNnHXFwoOxHW4q3WOMKz7OrH/t3RrGJE0q3wnIt+x45Efp73ZYIav0jgm1Edduausno+klIRKu2picjQdO0gUJXdnFPSiDYL+OS+EUTR8C7vLiPzePLw8M9Kd9WNV8Y7xldr/6u9nJvEn12eqWlVCQdnXQ6+RhKccqGRJnV1mVmhLmxX6chkt9IzzRX9OEovgiasANRBUPdXIK1WfbdfgPZDVWTcqtLmQ7tjltcuuj2oXMxHbmN9wSI1oaCMVqJn70JU9ZwvLUglFPnwpIG34GKevnYmNeex/ez29Zu8OcQKN/If3WEzK5lzQ2AtfbE/RtwvZX9AqldY2HRO/qqipuBkyfS4lg5Vx+7Gh/uuuzgITsCEaz5zuDLqDYX2T7JD+BBM92Hd12DRh1auY2SYYd8I3nGbg7htqw+ia5TY3lQgM9IoFof2enTTnytH5Dp+QKXkNlXMty/LX7Q2f3NOMJHVgGWY3j0J1WbixOCQ4+E6dOVEd1BbbruFdXYxp0WMqeWbubSvfEde1devReV27+YLtXZd2kx2P84llcRszKLq+cRTGKVWFp2f7C0aDbBWVr76pZvT2k39m3UdZtzfnhdRLknqdWtjGmNHJc57/D2sZvvpRTiTjFGNg3eDiil+7mNmZ5uTLoWdsWz3ke6K6DmsCE+zENamL7XON2RS3C2WCEudynNKOb615xVCBtNnJk6wyuso+BGJgXKh0CkIymZMNzLlW555sl0gDVUuPotM/jxfMn44EJc2Ug7AqxdrSKXU7lVNoJHFRL7SXgRC6OcB7Bah54B0frXGQwlkIfZ2gRbKAVSVrdaIYZS8Kg1pv9u1a3UBQtii+xSk4oy9+XlGsokPR2eBa0Ftd8jyGhb4cmXyK70nBvGGudetuivW5jokrHE3eVgS06F+ds+gkK+QUQlK6f2FImYtjGSfZHMHo32TTu76bIeGe21D8HkmXokYq+1f7Of3Z9rBi6SLwqEZbkSYVboUWbBwwTflHdUDy8lEC+8Mc8wGVM9RO2lnjMfxn5DruJN2lZBq8X8RIbJUfeYYOJbK/1CI3JtFoIowCyyIptIlGgHbKXa4/l8nA3n7ndxtk3w08QYIfPDV6mjUFEpZWCsKYn2MWV8vFVly48sZaNoI4kRFsJcuZUNv88hRMn5CcDLE5sb1mlbhceIszFDeZhZPqCoqj0R6b/mNuM0VJQFFXF1NQZjU5AQyXmaJUkaTFhAREJdKGQ2nFNRbV0NufNF6bNhqYAdZAH8hBdc6y8tg3GawSXI4RAe4eoAwh8OgMeaFqlbEZ99TvTfvLtCnCDEDs1GBpeOatk0DL2lDmUs0bWVNw7HXJxguvx9kxfHKeEkSdEsr/oQlZvZe8zft5MuFdzCIJCa5KUSd9MMs3Uq/qa7XF/aghldwReMH8h/SqIeG+oEM+1Vx3ABpnNk87m7HYEWeDsQSWa/h0ix7qN3yi2sJ/zOf6QX2uK2cw4VLg6V17UFxqWTUVYUpm/gU5Vfx388xz6NERQbrzsAIzClLVlFGajQ4teefPdHNHtoB4S+QdLRLIP9bZkm5BcsXHYgqBPB2S6umVevm88OiOkWfSxZb3K97z52qw3dw0sXbhrvGkTjaI77h8xwJTMjsrwdGVCkfvs6saqR/LZo483QAVVlIysqSPDoubjqaaIKgNQ0KsHsoZJaO9amMbOV4WA0iDoC3qa3/1oZB8hLCi/2u/fVVaDCU07BhYhVWWh8IutaoKIxklR/d/CfGCrva8UOSF7lBftnWyOIB++pDL3B2j1r5eRZUAkGpEBDwUj5pF9aOUM/Yz6NqCzqbb7d/8RGanU/faA4ZKMjIJ88u4QxzQ7k2J++sWVShaCYKPGmmvR56rJiDsVha6miGYmgkMIOvJutl8pe4hGkBAZRuRvq667gUZAO/yaj5nlqQbV+w9AwJCr6umtk+7JAhzWmHAIDIu8BS4uc+Iypthbjedf483GRQ0OGly1aB5CGHAJSc1JNGmEpTgGDzH463P16XmS3tOOgll4+HIlTn/G+HzXdHBL989aGx9+pgWMBgF4BHHimJv3JZJm2G7Gu+NGUNLuuYBCxh5vC2NWJsHltT1RNXO4IPUtwT2c6T7SnX8uqXM9PkutAD6M3tmkofl81VqhSH7SA9cT3+dg5ze8+8VhyDCtYFOBuKY/okdliaqMCbw7hzsA2EzuYWhFvIAtnyN4yOb5AFO5swe/BoziEE2WkJrpZ6wKjCZ8Z/YnE/yujS/5PGE0GqR0JFvK+0/mXFuNc2Udj0hZ+Bp0sKsLgXrw29oj7+GT108lSoSoEIzGHsHmjIfhoF3Onc8CgRFAZSVS5/1xJBQap2hhJE4R1+m6/oME16n3NOo2Z3QSgXNGIxPdKtHx4A2l201xrUyOqffw0puyumh4PxjsKbhETu60GzvV/Kssf7ne7RCzNwyAgHflHpRhG2P5NocjPSKxTcRdu1Bjd4xnCh4hs0NTzevwBQAH+TnDsq1Q5MqLiiajr9Gngd/bZCqfJX66Pf83e7+ECycn62f5OWm0JD0QDjItt8FoMWE2Q0lyA/3BOysY8zA7xMcHRwrENWCBiEIoMajxPbdns1NuCBBILCd4/klgAAAb50Aac4JxkNLgIILIyj8PnOSJr/5kBeFGFc6AH4G6D09bWwaAC0IKjiNz+i5nh2Jfjf/hIvWmtCN6eCn/Nmhn40Ajg9zjvLtjpdeqfUEsHCL1cAqreCwAAWw4AAFBLAwQUAAgACAAKpug8AAAAAAAAAAAAAAAAMQAAADQ2MTVhNjAxNmMzMTY4YjNiNjA3OWVjMzU5NTAyNTRkXEJld2Vpc3NjaGVtYS5wbmeNVnlcU1cafcGNRarWBRUFuiCiwkMGhKJsFQSMbOKCYnigZbGVgBgIiw+QRSpMtT9QArIEsEAoSlARNIEERHQ0LCOLyBIIINUkEGRJgCcJk5eAZRxnOv/kd8+95373fuc793u54uJkp6q8WRkAAFUHe5vDAKDAk46fKipIf1UmDW8AgLKZg431kbCuEbbH6d/t1y1zedZASFca9Frn9PXI2mI1nuqv+RF3qPjql+ll1zIVnnNXABwXp6ilQAyiAOQyAIACfjp0sYa/wwBHBluRFi+3vSd+jA0l1i/dInHGHIcAzIo2tVbV1UFW8G62FHxmqk3NCsb8OTPdEv5On9kb1TOcR+8/1VwZH+PWnZubhxiKqDvFvr5zs4LsCp3WgPY1Lu9NUr1Lio0CCnnJyNfDIfHiKdB2RzuJWpE+u/xCOPF1INaQXYFf2dwnmhoVGtOPpod4toRvfEqs1OI81hBY9uRMQyTrkSMUsHvdRmFB8RURElJ5xOtYCdhBdpyeOBhoXZMA05HgaKsMN8ii9z2obI6Dzwbkm9ud3L/kdDaSIjnV9cGhGHwc9bMRKwsZD4c3NTUbp/vTlfisSYsx00GvoV8aCN1n8tnRxDG6eFYREWMHPGJT8zQgC/YecyxiWpC0RuN+NPsozZz2U+gz/t3WUT9venY0dkxpKdtgW2VWwGGFXv/Xt8DtvX9TcQ2OdRQYlXdWHv2H7/htWHMbIbtoO1N/MwWk9gWV3XEWDj2oJ8J9ODy9577IxoS9h+zfmRZRfR7BNW2Ia23nzGSfrdUzd8K/a4gcE0re4gq66+ZUiDtG44T3TjR1lGlOra/oHt7E5EaRza0xc8x4866eOFxCqcFsql/j6JeTdYSVexzbRsi2tTniZOOc/Enat/Q8JKU7zLAE7B5JvIlXP1RuM85P/mL18mxtTyMl30axZoOf99j5AbDKAl/m3ZgDEiMv2hm0DTQaTjhumLJuVxPavg6c29G0v3zMb/+6FW/gyXzqQ9ga2VofaMaMShpnlx+GWrTTH9d+0zqSu/eHjKH2H/RMcaW/XBtu+Mm+XOd4RJb/5etNurvYGvpPZn8jbkhLJVV4CG3hNSK3h/Ynr7rusSGHJL/ZHhxaXRTUGkgeEIflZiBf6tVSwADHcsIVvU7xzImwVGbFjTyy5ill5whdSydDgi89uWDCY8MrtzY1YUJInYblky+E2iR+O5+V2WHrJtR2j3WFbmb6W/Yr3WY1aoWl23lkVMSGR4ZPmc7Qob1x/bixEdZaO9gViocTyuzoOwrWvukoATMucF9RwUBPtTvtJC9Nd/hsRP5QdHFtfZfGIGff5P21f+DJjSck517Onk+Js9tfbjK5b2RPZKRkgjxYFhR7FclnKH6o9F7llPd8+PC5u0hKZE4InzXAz69GDLuXHIM2Z/qP6TS0QISLD8jTO8f9KLssnCIEWFE8J6G7ddChQKwrU2W0zjNCZzqf8S1Ll5z1IeXi65CxNQw4iUhN3sbHcgO0ogtijH2ruBUzNpmi75WL8taJnHsFmGo4a7iYPmH8psc1v8Gv4EJ0szYEpVmOit3Mtr59mXZ5d7QK6lGVIuFlot1XSZaYaeTnkP4WlYRzB/i7J3QkQreqcNyWcoaNR7BgKuORABvqcAAuDkyDhcSe3lOvzpoFTUZcHtB8bqaHe6FP0Q2UcB8bP1AmE3nPpudUVrm7H4qKErboKYZleoPmLSMpB+sTV5bqmYxudpi0eOQyNHgLU+DWL+HqJlGxhdeYyGkaRqFUUYiNLPNU4yVzlxeq36h+piYx5dauyqxAaPIm8+Jt4tbZ1dgSKlbWf/xEx/p6uV/dYegL6wlLlm5xgQ6ZWNVYS2v4+d7V9TsIADfKEAV3GLMZt9DCFtGkamMWwmDkMaVuWrao36Hk1e+ZpeDbPLqn0kNNRynzEo/PuvUoS9oMay7FtZHCr3w8H+2PUiBc5gKhq7KQraoygPbNhcg1hLVB/zGJXsen2dpAVFTzx9anhCVokEX3QoGLNPSixGUrn6EZsOdppvYwBqDEt6vV8FT++Q5VWdE0l5GOj4lZIgcUkKeixYmRFeMLCliorsXJZVDAj+tyclzMnA/83So2QZeDN81Edx/tIN11lty0tryJogevSPzHrJI7h1gG6mob5SrMTIkM/36W3Dm7OoW7nKeSy7j9LtTgOXpajTePFSD04afOJ+TTLronTrw2D/TOMFk6RY5ysL6/6Fc0t0sv+KyCquFW3DwpW3CPNRQ6T7olMBRllj5Jx0u/cjwWlcbSPdM9aF+oLk0DuYcnnu80kwY4yf+YjxdN6f/NW/qcgYX1ebICwx0CgB3ewmVSWxnRFkeYZ0i/cAp/LbMWJ/oE1LTfBKc87ymaNEU6oW5G0neG6Ry3m416gwRdJ0k6cTk+vomS07RLiAIF3PlqE2oYjr1wKGLSP/H+goiqH3ZVzUvwY6PPs2aNDDkwE2juM8umcc55ok7O7ULGJ04ldtKY89wkPNZAXdPKUH7cDX5yO2rqwTYS/+U3HejboFQw9lkEGwnXy1EVI14zo5d/D5Tr+0n2shsukoLyX2jc5XJQ48pTAay0bzOAY1DMgeOf+vjzT/szb3Zp1VUkWIPWWiyX8kwbySNctvHqYUhjSMY3PQA/uk7CbwxUPSBLhMnoecGauQvcQivc5imlDdnJeDbwI0Kan7dsO48K3h+XeaANgmLloyMQVNh8sEigUycrcEg76WL23YWKo5omoyLEyK2zhfqnDQrV/80Tciti/upRnsOhdhtzRR8y0fzpNQCQlhtoUwOkTeZ/DCVPox0r9X9rWtkXI/0zCTjYOtmUfu8V+y9QSwcIIGKtYUkIAABzCgAAUEsDBBQACAAIAAqm6DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3bcuO2Gb5unoKjzuRqzcUZZGOnIzvbaWY23Uy8XXc6O7NDUZCMmCK1JOVTJ2/TF0hzm7vc7zMVAA8SJVIiRdsrt/GNRBCEgO/7T/gB0Md/vp0F1rWIExmFJwNog4ElQj8ay3B6MlikkyNn8OevvzieimgqRrFnTaJ45qUnA2yjgS5fyK+/+MNxchndWF5gqryT4uZkMPGCRAysZB4Lb5xcCpFWyr3FrQykF9+9Gf0o/DRZ3sga+TacL9SvpPFClfmz8WuZFJcvzQ/OA5l+I6/lWMRWEPknA0ZV19W3dyJOpe8FJwMCshJ0MkBrN1UR1ncvo1jeR2Gqqy8bn6gSy0rkvVBPAl12/NIM9Fgs/ECOpRfqwZh+qEqWdSPH6aVCD3Gk2hRyeqk66yAna86Ponh8fpekYmbd/lPEkarpYpszl7oMui5FxOED6y67dYSI7XKAgcMdh7oOo46CUfVZdYa4tksAg5xyDl0OCVWPNd8zvy6uz0WaKjoTy7sVS6CnsRxXLr5NTqNgWTSPZJieefN0ERtZwHnReXqnf06BF+txDsNpIPIyNXj/UvhXo+j23IAHcdb027u5ecR0aDQ9i4IotmJNixrANP8cZZ+mju5pWQuYOsDUyNvQjZb3oYtMDfM5yj5NrUCGWdfykcNi1BAUPyMTSxeoxrUIl4MPvJFQIjGwFqFMXxcXSnSu8qHC7IG/LWYjpTurwlO2CR+qzeOXa2J3fCXiUASZbIWK20W0SKxrLcTZb5mOjIUvZ+oyu5FD4mm6/q46kJWOxTQWRcczzcsAM3fBqvyuFR+/LDqh+5CovvqpMiFqPKkey6m4EQqHsUisUy+RyY0Mr0SQeOm9SLT2p0rzTgYze2oPrLGXqie0NRGBmAmle6mRl3AxE7H0S+TOlXDpVoLf/h1OxUB3TfVnkfeK2Xl3jS2KjFkpDEjewJIkdbtBvJQBml966psNcyHy7pSJWcXDtPZdNM5/OK+XBMYWzaQyo1Sb0Zl3qyVNf/VGSRQsUnHuK7TD15HvpcbcZr3LrYcySLqueogQ/eVOjQkZgzyRt2KpmKs2a4XupbCnl0qmQpEkRiPTVd3zQiUShidljea5vU/mQjdvvhe1rbkat9H78ieUGGb0bBBl7EKJ8nDQlwVjDkoewFYe3kwmiUg1akcYG9AQqqUpf8hgmZUsO2IkPNGNgBz5I66/3GeomDqZ8dPm3jyMu0By+pkgcTNAWA9AnL0B8aPZzAvHVujNFCDnYqrLDRBSO3fLA1pWLA9qfLLBL9Lihp+1lrexAW+St1YA6A9aq8BDmYf2YkkyFraRsCmATg43Le1aq9GJj2FWJ8l8ipypQMmXaQlwoLX62zBVHkYYi73pOK6EmGuP/SZ8G3thoiO+qnw0s3wmYz8Q9SSvme91xsfbGVdOZsUVjPfku+qKH5LwDUrb0SWnIrxWXYvixLJuQW6F70AuCPdFya0C8CiTDZgX3cMVZVRWPZa31rCoPyxqDZEOw8w3nDc6JEVbQ3oy4HaD6Ci34MuJ9Pdg/LQV46IL4+J3xjswzvkm484DMV4ajzXSxxnpeg6HVvq5QvjZdsKrPvNsL5/JiOFSf4yyj+4GG+YeD5J2JruI1o6QTRF3GAGEAgAIAuTRPObZBrijbh5zdAgeE9YTgAo8t6rbkoAjYhOOIKYuJa6aTzvmcZJ7UOQ8Jw9az/ppE+teN9a9w2U9D3v6MH5UUM5tzjlwOMPqJmOYPx/+h+F0EXjxqUyMj2jSfmNjN8PmyXZx0ACUNE4O36MuCYe5jQU5w4bqhyG1u6ebZCz4G/BfdHFwF60dnIqExjKbtavab/LKVw/o/bYgj1Hh3sxURIPv7OfQfvDu1oA8y4C82ADyZjuQsWqpgOnmYU1aa6z7zgvzWWHrGKPG3pXKALntOA4l2IHqroM38p+Ha+86+rtpN383bRYOnZtuKR0rI60XD7kpHuupbQofQhkf0O9tjP8gBaEx3L3sJgiX/xeC0DLk/fzUV8mSM2+6BPlUBmNo6JpI1aVMOkbUg4Jz7I84Br4ScnfkUeGxse+M6cRl77MFh8S/FDPPnofTrFMyPPX8q2kcLcLxRo+T1IvT77ULs0Kz5mIMuTG2XCvQ8q+Y3gFUndD1DZ5WOrPbtcAdoXSbzG4XDtA6B4RB6jEAmY8hc0Z4xAB3ha9lECBKxq05WFnGbaaAVCjIDZ3OZPXmoEmlPwMFt/NY9Vdbkbw7b8VtqgyEunEy+PLjIkq/2raSltUwrVbZTFUzg2qbDwjDrkndJgx6QT0RsZwsNwaYBWI2KEwO2BCILBtOHbD6B3M5sHFFDHaDiiqgvotib5GoSOx+EU7bo4jao1jvH358NIjXgIPELnUG2MRpBKsy4FEUBcILy/H8uL7Iumo9n0aWlgGzg3jm5LjbDMRuQcAVQfCs94qpqTVqLwS4rxDUBAkPJAQyee29Ff/YYmWzJT3MStEAZE299pETeUhyQklmJIizZcltt5yQipz8VQbBJLnKdjpcGUrvF7GVGefJb79exp0MCTlMcwxKc4xqJcctJYfYmHQzwLSC54XxYpdeMJIiFqHq4I11rR5oDyHtq4a95vRdbLFrK0nMUXO7gcYqoL03u3es4dlpe5jY4cLUzlopT4ZL+Eiz0G01UFeHZKBYPltDgPYxUHwtTJzGv/0ajpUZsvQ+JGWwqvaqvcjw52ucakJFatNuOudUcH11K5NUhPeWnr28kspSLVI5vRIyNTBv2LEOODt9VTN4OgvmVqLwXB+ZDZuj8K36GByWPhb7pHoFDO5DzDDc56p7iBVJEtg82aif7oK+EblqoacmzT63k1Pt0tqUE4LuWh5kH32bHZa+ZWsfbi91g+tpkktvMU87KRs80KzILm2DyGasxh4r3asKEW+Slo01540tXGfFzkyz0jzMQVjm3z/9J2uzKQFvQtUSSFV7TQCB7RAImMM4oIy7GKBd0rhrjS5sIgqCTarabu7ukmT0Yn+5Fqp/NCsNgujmBzEJxK3BucNGgKZ9dcOMlM1FkU8/dyLl599J2UlKg/FBaxMzPYTccb0fidTrYIR6JxUbMX4q54VtVlqgPQPC8JAclINo5qC2gNNCRqqZxr9EwVToLJGl4sK+UzTYIQl5SJ5rmUBitjIwjgOBi11MuQs7ztJgNT/3KlFXaqamZmGpdfHC4HvuX4YyVcYxvEpNcunGmqlpWweUO6Tp6lUzesIZGmeEqqmMixxGGSsObWC0xBhw3BHkatLufXQtYm11/zU8/akDjL1TdY8HY0sLx21CKEbMdSHjRf5GybBDOMUOI4Rw4LA9g/PokGxfMTi87RhVC8lhW7NTpTHsIEUdMpkHZvIo5dDFDmSOQwrNdGwAHBdylxIHUtYcqjfgW83+vRYq4LNgBzQ7JPnqdXL+VKbNzI0ZpZAjArGKSgsAGXAZhtiFCACX7rl0NT8o5cvjKOzwdsq3e8pQ3TG8udPy0y8fhp0mDbr+xrSBI5cjZRgZUjaSMdx32vBxE1sI8lPeANWciHz0qYP7CNO5ix27uRXWpx25Of2dmx6zumrq//3UU6h/GBbzuuyyw9ob7J3hr8H6ibcKQJdgAgCHmGBGym0DDCOAMXKx8lyus6ft/XhItrfYNkC3HftqIUPVZYAbS01KNleJzHTk0y8dRKnDwkC9KMVP5q+x8syAK+9czO9yqYE20m9IQS5xHA6w2zzj2yo18SFJjX7JSyY1Ww7Zd9303HgsItnuDdY3PSdPs+k53YQVUrwCrLnaV7oe4wzEAWyArt+kCBrm22cXPxVeaLWsw87F3ktkNSw/qSvitusSFWAg6iJIEYKsNCsEIpeVFmfPDGR6SGaFkmwiQEnLiUCDPFXXyNJYXksv6CA1HRbI6qVm8WReh9qclREJd5bS4biYYkghgICDPYVjcUjCUfoc0nIjbNXnfB8Fd9MorJ8nXjQtLb2Tqj3/CuZHHz/ArKJnvuCTwc0HuN05zfOfLcApG2wd8/cQw+tNFspzOSA7LWk+Sy7oBhdt02Hb31Pz4aHH235Ie/vd4pU0z+VA/Y4j8HtT0OrsziNxUH/eqwh+ntX5z+303DxHDdl+KvPo0BWm6h++k3Hc9OKBmw2/MPzSm0fJV7tsf+UFcfkjvZ3nrpei4Xbsla84Y7Zb/evz+pZaGC+aYLzoDuNFE4xtXtDQ6U0BLXHUbwqo24Db87UBtUCeNQF51h3Isz7y+BhAPtILhRoCv3z0WfhXXqAKlLWh4OqD/uqDXnmhA8N2hNQHhyvMPIMQcQu9HULERxlzHyfY2oyqyTd3CHS50n1E0aujYo6Oaw3rEeJr5UUO7SC95I6wshdtjxJatuSt4Z0SDXT+j0Wbz1XZ1jjjbmWGdrT+IhB80BTV565Q096ji7PNZOipKuyQ1+q957LGW7RP62zluG02VG88yneUQAiLs94qBHMxZy5GCGGtovvlu64/T75rFZiaZGi/A72ouh8TvrDQCwu/sM4vzjtITu/T3/ePJjmbGVHoIGUBOCQMUUJ4KSOUry7q7pkTvT8kGSlzonzLGwRbyEh1V+lwkVjEmkTBNLUW4UymqQhGXmyNpbCWB07sL/8IweoWtz91kKdHPwneRWSIzV2gt4swChmgqFjvx7ZDqcMQYI7LKEXN6/31qFa3kX4jJjLMFEPvBfwmFlLF+non9FSNPLzvgF7vnaWjD/CpwKU2oRA4KgCg0CEYFCsUSk2VPgIVanEHALTnCedRnjc7EH0kKItIOGxps1+u/hcJfV38x5mv/wtQSwcI8ERz8voNAACjZgAAUEsBAhQAFAAIAAgACqboPL1cAqreCwAAWw4AADEAAAAAAAAAAAAAAAAAAAAAAGI1YTFlNzczY2I3MzBjNzcwOWJhNWVhNmRjOGQ1Zjk2XEJld2Vpc3NjaGVtYS5wbmdQSwECFAAUAAgACAAKpug8IGKtYUkIAABzCgAAMQAAAAAAAAAAAAAAAAA9DAAANDYxNWE2MDE2YzMxNjhiM2I2MDc5ZWMzNTk1MDI1NGRcQmV3ZWlzc2NoZW1hLnBuZ1BLAQIUABQACAAIAAqm6DzwRHPy+g0AAKNmAAAMAAAAAAAAAAAAAAAAAOUUAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwD4AAAAGSMAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" />
Zeile 116: Zeile 67:
 
Wir beweisen die Korrektheit der Konstruktion indem wir folgendes zeigen:
 
Wir beweisen die Korrektheit der Konstruktion indem wir folgendes zeigen:
  
===== Satz VII.6 a: (hinreichende Bedingung dafür, dass ein Punkt zur Mittelsenkrechten von <math>\overline{AB}</math>gehört.) =====
+
===== Satz VII.6 a: =====
 
::Wenn ein Punkt <math>\ P</math> zu den Endpunkten der Strecke <math>\overline{AB}</math> jeweils ein und denselben Abstand hat, so ist er ein Punkt der Mittelsenkrechten von <math>\overline{AB}</math>.
 
::Wenn ein Punkt <math>\ P</math> zu den Endpunkten der Strecke <math>\overline{AB}</math> jeweils ein und denselben Abstand hat, so ist er ein Punkt der Mittelsenkrechten von <math>\overline{AB}</math>.
  
Zeile 140: Zeile 91:
 
Der folgende Satz VII.6 b beantwortet diese beiden Fragen postiv:
 
Der folgende Satz VII.6 b beantwortet diese beiden Fragen postiv:
  
===== Satz VII.6 b (notwendige Bedingung dafür, dass ein Punkt zur Mittelsenkrechten von <math>\overline{AB}</math> gehört)=====
+
===== Satz VII.6 b =====
 
::Wenn ein Punkt <math>\ P</math> zur Mittelsenkrechten der Strecke <math>\overline{AB}</math> gehört, dann hat er zu den Punkten <math>\ A</math> und <math>\ B</math> ein und denselben Abstand.
 
::Wenn ein Punkt <math>\ P</math> zur Mittelsenkrechten der Strecke <math>\overline{AB}</math> gehört, dann hat er zu den Punkten <math>\ A</math> und <math>\ B</math> ein und denselben Abstand.
 +
Beweis: Übungsaufgabe
 +
==Die Umkehrung des Basiswinkelsatzes==
 +
===== Satz VII.7=====
 +
::Wenn ein Dreieck zwei zueinander kongruente Innenwinkel hat, dann ist das Dreieck gleichschenklig.
  
Bemerkung zu der Idee der notwendigen Bedingung:
 
::Wir wissen, eine Implikation ''aus a folgt b'' bedeutet, dass  ''a'' eine hinreichende Bedingung für ''b'' ist. Warum kennzeichnet eine Implikation jetzt auf einmal eine notwendige Bedingung?
 
  
::Natürlich kennzeichnet die Implikation VII. 6 b auch eine hinreichende Bedingung. Dafür dass ein Punkt  <math>\ P</math> zu zwei verschiedenen Punkten <math>\ A</math> und <math>\ B</math> ein und denselben Abstand hat ist es hinreichend, dass <math>\ P</math> auf der Mittelsenkrechten von  <math>\overline{AB}</math> liegt.
 
::Zur Implikation VII.6 b äquivalent ist deren Kontraposition:
 
::Wenn ein Punkt <math>\ P</math> zu den Punkten <math>\ A</math> und <math>\ B</math> nicht ein und denselben Abstand hat, dann ist er auch nicht ein Punkt der Mittelsenkrechten von <math>\overline{AB}</math>.<br />
 
  
  
Beweis: Übungsaufgabe
+
 
 +
<!--- Was hier drunter steht muss stehen bleiben --->
 +
|}
 +
</div>
  
 
[[Kategorie:Einführung_S]]
 
[[Kategorie:Einführung_S]]

Aktuelle Version vom 27. Juni 2012, 12:11 Uhr


Inhaltsverzeichnis

Der Basiswinkelsatz

Gleichschenklige Dreiecke

Definition VII.4 : (gleichschenkliges Dreieck)

Das können sie selbst. Bringen Sie in der Definition die Begriffe Basis, Basiswinkel und Schenkel eines gleichschenkligen Dreiecks unter.

Übungsaufgabe

Der Basiswinkelsatz

Satz VII.5: Basiswinkelsatz
In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.

Schulvariante des Beweises des Basiswinkelsatzes

Ein im Rahmen unserer Theorie korrekter Beweis des Basiswinkelsatzes

Probieren Sie ruhig weitere Varianten: Mittelsenkrechte ... . Letztlich hilft nur die Winkelhalbierende des Winkels, der der Basis des gleichschenkligen Dreiecks gegenüberliegt. Die Winkelhalbierende muss dann die Basis des Dreiecks schneiden. Diese unmittelbar einsichtige Tatsache muss eigentlich bwiesen werden. Wir verweisen diesbezüglich auf die Lemmata zu Winkeln.

Hinweis: Im folgenden Beweis berufen wir uns auf Lemma 1. Korrekterweise müsste es Lemma W/3 heißen. Sobald ich Zeit finde werde ich die App überarbeiten.--*m.g.* 18:17, 21. Jun. 2012 (CEST)

Hier finden Sie das Arbeitsblatt zum Beweis des Basiswinkelsatzes aus der Vorlesung vom 28.06.2012.

Beweis des Basiswinkelsatzes

Das Mittelsenkrechtenkriterium

Satz VII.6: (Mittelsenkrechtenkriterium)
Ein Punkt \ P gehört genau dann zur Mittelsenkrechten der Strecke \overline{AB}, wenn \overline{AP} \tilde {=} \overline{BP} gilt.



Bezug zur Schule:

Konstruktion der Mittelsenkrechten einer Strecke \overline{AB} mittels Zirkel und Lineal:

Konstruktionsvorschrift:

gegeben: Strecke \overline{AB}

gesucht: \ m , die Mittelsenkrechte von \overline{AB}


Schrittnr. Konstruktionsschritt
1. Zeichne einen Kreis um \ A, dessen Radius \ r länger als die Hälfte der Länge der Strecke \overline{AB} ist.
2. Behalte \ r bei und zeichne einen Kreis um \ B.
3. Der Kreis um \ A schneidet den Kreis um \ B in den beiden Schnittpunkten \ S_1 und \ S_2.
4. Zeichne die Gerade \ S_1S_2. Sie ist die gesuchte Mittelsenkrechte von \overline{AB}.

Frage: Ist dieser Algorithmus korrekt? Anders gefragt: Ist \ S_1S_2 wirklich die Mittelsenkrechte von \overline{AB}?

Wir beweisen die Korrektheit der Konstruktion indem wir folgendes zeigen:

Satz VII.6 a:
Wenn ein Punkt \ P zu den Endpunkten der Strecke \overline{AB} jeweils ein und denselben Abstand hat, so ist er ein Punkt der Mittelsenkrechten von \overline{AB}.
Beweis von Satz VII.6 a

Übungsaufgabe (Das Video hilft)


Nach dem Beweis von Satz VII.6 a wissen wir, dass die beiden Punkte \ S_1 und \ S_2 Punkte der Mittelsenkrechten von \overline{AB} sind.

Die Wahl des Radius \ r der beiden Kreise in unserer Konstruktion war beliebig für \ | r | > \frac{1}{2} | \overline{AB} |. Wir stellen uns jetzt die frage, ob wir jeden beliebigen Punkt unserer Mittelsenkrechten als Schnittpunkt zweier entsprechender Kreise konstruieren könnten.

Die Frage anders formuliert:

Hat jeder Punkt der Mittelsenkrechten von \overline{AB} zu den Punkten \ A und \ B jeweils ein und denselben Abstand?

Noch anders formuliert:

Hat jeder Punkt der Mittelsenkrechten einer Strecke \overline{AB} notwendigerweise zu \ A und zu \ B ein und denselben Abstand?

Der folgende Satz VII.6 b beantwortet diese beiden Fragen postiv:

Satz VII.6 b
Wenn ein Punkt \ P zur Mittelsenkrechten der Strecke \overline{AB} gehört, dann hat er zu den Punkten \ A und \ B ein und denselben Abstand.

Beweis: Übungsaufgabe

Die Umkehrung des Basiswinkelsatzes

Satz VII.7
Wenn ein Dreieck zwei zueinander kongruente Innenwinkel hat, dann ist das Dreieck gleichschenklig.