13)
Inhaltsverzeichnis |
Ideen zur Heranführung an die Geradenspiegelung
Idee der Symmetrie
Die Applikation wurde im WS 2010/11 von tutorin Anne generiert.
Verwendung eines halbdurchlässigen Spiegels
|
|
|
|
|
|
|
|
|
|
|
Falten
Leider sind meine Bilder von der Qualität her zu schlecht geworden, als dass sie hier veröffentlicht werden könnten. Wer hilft? --*m.g.* 13:04, 27. Okt. 2011 (CEST)
Konstruktion des Bildes eines Punktes
bei einer Spiegelung an der Geraden 
Reduktion der großen Idee Geradenspiegelung auf: Konstruktion des Bildes eines Punktes bei einer Geradenspiegelung
Übungsaufgabe:
Es sei ein Punkt der Ebene der nicht zur Geraden
dieser Ebene gehört.
Erstellen Sie eine Konstruktionsbeschreibung für die Konstruktion des Bildes von
bei der Spiegelung an
. Begründen Sie jeweils die Korrektheit eines jeden Ihrer Konstruktionsschritte.
Nr. | Beschreibung des Schrittes | Genauere Beschreibung | Begründung der Korrektheit des Schrittes |
---|---|---|---|
1. | ... | ... | ... |
2. | ... | ... | ... |
3. | ... | ... | ... |
Bemerkung zum Nachweis der Korrektheit des jeweiligen Schrittes: Gemeint ist eine Begründung, aus der hervorgeht, dass der jeweilige Schritt (ggf. eindeutig) ausführbar ist.
Definition des Begriffs
Definition 2.1: (Spiegelung an der Geraden
)
- Es sei
eine Gerade. Unter der Spiegelung
an der Geraden
versteht man eine Abbildung der Ebene auf sich, ...
- Es sei
Die Geradenspiegelung als spezielle Bewegung
Satz 2.1: (Abstandserhaltung von Geradenspiegelungen)
- Jede Geradenspiegelung
ist eine abstandserhaltende Abbildung.
- Jede Geradenspiegelung
Beweis von Satz 2.1:
Es seien ,
zwei Punkte, die an einer Geraden
auf ihre Bilder
und
gespiegelt werden.
Wir unterscheiden drei Fälle:
Fall 1
Beweis:
Fall 2
,
Beweis:
Fall 3
,
und
liegen in derselben Halbebene bezüglich
Beweis:
Fall 4
,
und
liegen in verschiedenen Halbebenen bezüglich
Eindeutige Bestimmtheit von Geradenspiegelungen
Bestimmung über die Spiegelgerade
Unmittelbar einsichtig ist der folgende Satz:
Satz 2.2
- Jede Geradenspiegelung ist durch die Angabe ihrer Spiegelachse eindeutig bestimmt.
- Jede Geradenspiegelung ist durch die Angabe ihrer Spiegelachse eindeutig bestimmt.
Satz 2.3
- Eine Geradenspiegelung
ist durch die Angabe eines Punktes
und dem Bild von
eindeutig bestimmt, falls
gilt.
- Eine Geradenspiegelung