Geradenspiegelungen (2012/13)
Inhaltsverzeichnis |
Ideen zur Heranführung an die Geradenspiegelung
Idee der Symmetrie
Die Applikation wurde im WS 2010/11 von tutorin Anne generiert.
Verwendung eines halbdurchlässigen Spiegels
Falten
Leider sind meine Bilder von der Qualität her zu schlecht geworden, als dass sie hier veröffentlicht werden könnten. Wer hilft? --*m.g.* 13:04, 27. Okt. 2011 (CEST)
Konstruktion des Bildes eines Punktes bei einer Spiegelung an der Geraden
Reduktion der großen Idee Geradenspiegelung auf: Konstruktion des Bildes eines Punktes bei einer Geradenspiegelung
Übungsaufgabe:
Es sei ein Punkt der Ebene der nicht zur Geraden dieser Ebene gehört. Erstellen Sie eine Konstruktionsbeschreibung für die Konstruktion des Bildes von bei der Spiegelung an . Begründen Sie jeweils die Korrektheit eines jeden Ihrer Konstruktionsschritte.
Nr. | Beschreibung des Schrittes | Genauere Beschreibung | Begründung der Korrektheit des Schrittes |
---|---|---|---|
1. | ... | ... | ... |
2. | ... | ... | ... |
3. | ... | ... | ... |
Bemerkung zum Nachweis der Korrektheit des jeweiligen Schrittes: Gemeint ist eine Begründung, aus der hervorgeht, dass der jeweilige Schritt (ggf. eindeutig) ausführbar ist.
Definition des Begriffs
Definition 2.1: (Spiegelung an der Geraden )
- Es sei eine Gerade. Unter der Spiegelung an der Geraden versteht man eine Abbildung der Ebene auf sich, ...
Die Geradenspiegelung als spezielle Bewegung
Satz 2.1: (Abstandserhaltung von Geradenspiegelungen)
- Jede Geradenspiegelung ist eine abstandserhaltende Abbildung.
Beweis von Satz 2.1:
Es seien , zwei Punkte, die an einer Geraden auf ihre Bilder und gespiegelt werden.
Wir unterscheiden drei Fälle:
Fall 1
Beweis:
Fall 2
- ,
- ,
Beweis:
Fall 3
- , und liegen in derselben Halbebene bezüglich
- , und liegen in derselben Halbebene bezüglich
Beweis:
Fall 4
- , und liegen in verschiedenen Halbebenen bezüglich
- , und liegen in verschiedenen Halbebenen bezüglich
Eindeutige Bestimmtheit von Geradenspiegelungen
Bestimmung über die Spiegelgerade
Unmittelbar einsichtig ist der folgende Satz:
Satz 2.2
- Jede Geradenspiegelung ist durch die Angabe ihrer Spiegelachse eindeutig bestimmt.
- Jede Geradenspiegelung ist durch die Angabe ihrer Spiegelachse eindeutig bestimmt.
Satz 2.3
- Eine Geradenspiegelung ist durch die Angabe eines Punktes und dem Bild von eindeutig bestimmt, falls gilt.