Lösung von Aufgabe 12.4

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Beweisen Sie die Existenz und die Eindeutigkeit des Lotes von einem Punkt \ P auf eine Gerade \ g.

Existenz

Voraussetzung: Gerade \ g, Punkt \ P \notin g
Behauptung: Es existiert ein Lot \ lvon \ P auf \ g mit Lotfußpunkt \ L
Analoge Behauptung (Definition von Lot) Es existiert eine Senkrechte auf \ g, die durch \ P geht.

Nr. Beweisschritt Begründung
(I) Es existiert ein Punkt A \in g, der Abstand zu P beträgt |AP| \ Axiom I/1 (Axiom von der Geraden), Axiom III.1 (Axiom vom Lineal)
(II) Am Scheitelpunkt A \ wird an der Gerade g \ der Winkel \alpha \ in die Halbebene g,P^- \ abgetragen. Winkelkonstruktionsaxiom
(III) IN ARBEIT: Strecke AP auf neuer Geraden antragen
(IV) IN ARBEIT: Gerade PP' schneidet g in L
(V) IN ARBEIT: zwei kongruente Dreiecke - SWS
(VI) IN ARBEIT: Winkel an L sind Nebenwinkel und kongruent --> rechte Winkel
(VII) IN ARBEIT: Gerade PL steht senkrecht auf g --> PL ist Lotgerade, Strecke PL ist Lot(strecke)

Kleine Anmerkung: Bei Schritt (II) muss man an sich auch definieren, dass der Winkel \alpha \ bezüglich AP^+ \ in der selben Halbebene liegt. An dieser Stelle wurde es wg. besserer Übersicht weggelassen.


Eindeutigkeit

Voraussetzung: Gerade \ g, Punkt \ P \notin g, Lot \ lvon \ P auf \ g mit Lotfußpunkt \ L
Behauptung: Es existiert genau ein Lot von \ P auf \ g.
Indirekter Beweis - Annahme: Es existieren zwei "Lote" von \ P auf \ g.
Annahme: Es existiert ein zweiter Lotfußpunkt \ L'

Nr. Beweisschritt Begründung
(I) Es existiert ein Dreieck \overline {PLL'} VSS, Punkte \ L L' P sind nicht kollinear, da \ L \in g \and L' \in g \and P \notin g laut Definition Lot und Lotfußpunkt.
(II) |\angle LL'P| = 90 Annahme, \ L' ist Lotfußpunkt
(III) |\angle PLL'| = 90 VSS, \ L ist Lotfußpunkt
(IV) Außenwinkel von |\angle LL'P| = 90 Supplementaxiom
(V) |\angle PLL'| < Außenwinkel von |\angle LL'P|


|\angle PLL'| < 90

Schwacher Außenwinkelsatz
(VI) Annahme muss verworfen werden Widerspruch zwischen (V) und (III) !!!


--Heinzvaneugen 00:27, 13. Jul. 2010 (UTC)