Lösung von Aufgabe 12.4

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Beweisen Sie die Existenz und die Eindeutigkeit des Lotes von einem Punkt \ P auf eine Gerade \ g.

Existenz

Voraussetzung: Gerade \ g, Punkt \ P \notin g
Behauptung: Es existiert ein Lot \ lvon \ P auf \ g mit Lotfußpunkt \ L
Analoge Behauptung (Definition von Lot) Es existiert eine Senkrechte auf \ g, die durch \ P geht.

Nr. Beweisschritt Begründung
(I) Es existiert ein Punkt A \in g, der Abstand zu P beträgt |AP| \ Axiom I/1 (Axiom von der Geraden), Axiom III.1 (Axiom vom Lineal)
(II) Am Scheitelpunkt A \ wird an der Gerade g \ der Winkel \alpha \ in die Halbebene g,P^- \ abgetragen. Winkelkonstruktionsaxiom
(III) Auf dem entstanden Strahl trägt man die Länge von \ |AP| ab. Es entsteht der Punkt \ P'. Axiom III.1 (Axiom vom Lineal)
(IV) \ PP' \cap g . Der Schnittpunkt sei \ L. \ P und \ P' liegen in unterschiedlichen Halbebenen bezogen auf \ g .
(V) Es entstehen zwei kongruente Dreiecke \overline {PLA} und \overline {P'LA} SWS

S - \overline {PA} \cong \overline {P'A} (III)
W - \alpha \cong \alpha' (II)
S - \overline {AL} \cong \overline {AL} trivial

(VI) Die Winkel an \ L sind rechte Winkel (IV), (V), kongruente Nebenwinkel sind rechte Winkel (Definition V.6 : Rechter Winkel)
(VII) \ PL steht senkrecht auf \ g \rightarrow PL ist Lotgerade, \overline {PL} \ ist Lot(strecke) (VI), Definition Lot

Kleine Anmerkung: Bei Schritt (II) muss man an sich auch definieren, dass der Winkel \alpha' \ bezüglich AP \ in der selben Halbebene liegt wie \alpha \ . An dieser Stelle wurde es wg. besserer Übersicht weggelassen.


Eindeutigkeit

Voraussetzung: Gerade \ g, Punkt \ P \notin g, Lot \ lvon \ P auf \ g mit Lotfußpunkt \ L
Behauptung: Es existiert genau ein Lot von \ P auf \ g.
Indirekter Beweis - Annahme: Es existieren zwei "Lote" von \ P auf \ g.
Annahme: Es existiert ein zweiter Lotfußpunkt \ L'

Nr. Beweisschritt Begründung
(I) Es existiert ein Dreieck \overline {PLL'} VSS, Punkte \ L L' P sind nicht kollinear, da \ L \in g \and L' \in g \and P \notin g laut Definition Lot und Lotfußpunkt.
(II) |\angle LL'P| = 90 Annahme, \ L' ist Lotfußpunkt
(III) |\angle PLL'| = 90 VSS, \ L ist Lotfußpunkt
(IV) Außenwinkel von |\angle LL'P| = 90 Supplementaxiom
(V) |\angle PLL'| < Außenwinkel von |\angle LL'P|


|\angle PLL'| < 90

Schwacher Außenwinkelsatz
(VI) Annahme muss verworfen werden Widerspruch zwischen (V) und (III) !!!


--Heinzvaneugen 00:27, 13. Jul. 2010 (UTC)