Quiz der Woche

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Es sei \ R ein Äquivalenzrelation auf der Menge  \ M. Wir zerlegen \ M derart in Teilmengen \ T_1, T_2, T_3, ..., T_n, ..., dass gilt: Jede der Teilmengen besteht aus all den Elementen von  \ M, die in der Relation \ R zueinander stehen.

Übung zur Generierung einer Klasseneinteilung entsprechend obiger Idee.
Wir gehen von der folgenden Menge  \ M aus: M:=\left \{13, 127, 755, \right\}

Insekt Käfer 4706bee.web.jpg Ameise Motte
Obst Pflaume Rote Birne.jpg Apfel Kirsche Banane
Nutztier Datei:Gluecks schwein.jpg Schaf Rind
Pluspunkt für eine richtige Antwort:  
Minuspunkte für eine falsche Antwort:
Ignoriere den Fragen-Koeffizienten:

1. Wir wollen versuchen, die Art und Weise der Generierung einer beliebigen der Teilmengen \ T_1, T_2, T_3, ..., T_n, ... formal zu beschreiben. Diesbezüglich stellen wir fest, dass es sinnvoller ist, die

Hallo
Test

Punkte: 0 / 0


Im folgenden soll bewiesen werden, dass die so gewonnenen Teilmengen von M eine Klasseneinteilung von M sind. Ergänzen Sie dementsprechend die folgenden Ausführungen:

Pluspunkt für eine richtige Antwort:  
Minuspunkte für eine falsche Antwort:
Ignoriere den Fragen-Koeffizienten:

1. Überlegungen zur Voraussetzung

Voraussetzung: R ist eine
Das bedeutet:
(R) R ist
(S) R ist
(T) R ist

Punkte: 0 / 0
Pluspunkt für eine richtige Antwort:  
Minuspunkte für eine falsche Antwort:
Ignoriere den Fragen-Koeffizienten:

1. Überlegungen zur Behauptung

Behauptung: Die Einteilung von \ M in die Teilmengen \ T_1, T_2, T_3, ..., T_n, ... ist eine von \ M.
Das bedeutet, dass wir zu zeigen haben:
(L) Der Durchschnitt zweier verschiedener Teilmengen \ T_i und \ T_j ist die
(S) Die Vereinigungsmenge aller Teilmengen \ T_1, T_2, T_3, ..., T_n, ... ist die Menge
(0) Weder \ T_1 noch \  T_2 noch irgendeine andere der Mengen \ T_1, T_2, T_3, ..., T_n, ... ist .

Punkte: 0 / 0