Übung Aufgaben 10 (SoSe 17)
Inhaltsverzeichnis |
Aufgabe 10.1
Beweisen Sie Satz IX.2:
Gegeben seien zwei Spiegelgeraden a und b mit einem gemeinsamen Schnittpunkt S, sowie zwei Punkten und , die von S jeweils verschieden sind. Wir betrachten die Verkettung . Für einen beliebigen Punkt P und seinen Bildpunkt gilt: .
Lösung von Aufgabe 10.1P (SoSe_17)
Aufgabe 10.2
Das Rechteck soll durch eine Drehung auf das blaue Rechteck abgebildet werden. Konstruieren Sie den Drehpunkt. Wo müssen die beiden Achsen liegen, wenn die Drehung durch eine Verkettung zweier Achsenspiegelungen erzeugt werden soll?
Falls nichts angezeigt wird, können Sie mit folgendem Link den Servercache leeren.
Lösung von Aufgabe 10.2P (SoSe_17)
Aufgabe 10.3
Beweisen Sie Satz IX.3:
Bei einer Punktspiegelung ist der Schnittpunkt S der beiden Spiegelgeraden a und b Mittelpunkt der Strecke , mit .
Lösung von Aufgabe 10.3P (SoSe_17)
Aufgabe 10.4
Beweisen Sie Satz IX.4:
Bei einer Punktspiegelung werden Geraden stets auf parallele Bildgeraden abgebildet.
Lösung von Aufgabe 10.4P (SoSe_17)
Aufgabe 10.5
Gegeben sei ein Dreieck und die Geraden a, b, c und d mit: und entsprechend der Skizze.
- Durch welche Abbildung kann die Verkettung der vier Geradenspiegelungen ersetzt werden (Begründen Sie Ihre Entscheidung)?
- Zeichnen Sie die Achsen der Ersatzabbildung in die Skizze oben ein. Hinweis: Sie dürfen das Gitter im Hintergrund als Orientierung nutzen.
- Konstruieren Sie oben in der Skizze das Bild des Dreiecks , das nach der Verkettung entsteht, mit Hilfe der Ersatzabbildung.