Der Umkreis und die Mittelsenkrechten eines Dreiecks
Inhaltsverzeichnis |
Umkreis eines Dreiecks
Definition XIII.1 : (Mittelsenkrechten eines Dreiecks)
- Unter den Mittelsenkrechten eines Dreiecks versteht man die Mittelsenkrechten der Seiten dieses Dreiecks.
Definition XIII.2 : (Umkreis eines Dreiecks)
- Wenn ein Kreis
durch die Eckpunkte
des Dreiecks
geht, dann ist
der Umkreis des Dreiecks
.
- Wenn ein Kreis
Satz XIII.1 (Schnittpunkt der Mittelsenkrechten eines Dreiecks)
- Die Mittelsenkrechten eines Dreiecks schneiden einander in genau einem Punkt.
Beweis: Existenz und Eindeutigkeit eines Schnittpunktes der Mittelsenkrechten eines Dreiecks
Man muss also beweisen, dass es...
- (1) einen Schnittpunkt aller drei Mittelsenkrechten gibt
- (2) GENAU einen Schnittpunkt gibt
Dies findet jedoch nicht in diesen zwei Schritten wie üblich statt, da andere Grundvoraussetzungen geklärt werden müssen. Zur besseren Veranschaulichung sei die Vorgehensweise:
- (a) Die drei Mittelsenkrechten schneiden sich: vielleicht in einem, vielleicht in drei verschiedenen Punkten (Grundvoraussetzung)
- (b) Es existiert ein Schnittpunkt von zwei Mittelsenkrechten
- (c) Es existiert ein Schnittpunkt der beiden Mittelsenkrechten aus (b) und der dritten Mittelsenkrechten
Etwas formloser nun ohne Voraussetzung und Behauptung:
- (a) Die drei Mittelsenkrechten schneiden sich: vielleicht in einem, vielleicht in drei verschiedenen Punkten (Grundvoraussetzung)
- (I) Die drei Eckpunkte des Dreiecks sind nicht kollinear (Konstruktion eines Dreiecks)
- (II) Daraus resultieren drei Geraden
, die paarweise nicht identisch sind (I)
- (III) "Es seien g und h zwei Geraden. Wenn g und h nicht identisch sind, haben sie höchstens einen Punkt gemeinsam." (Satz I.1)
- (III)a Keine Seite eines Dreiecks kann parallel zu einer zweiten Seite des Dreiecks sein.
- (IV) Die Senkrechten auf zwei nicht-identischen, nicht-parallen Geraden schneiden sich (da nur die Senkrechten von parallelen Geraden schnittpunktfrei sind --> die Senkrechte zur Senkrechten einer Gerade ist die Parallele zur Geraden)
- (a) Die drei Mittelsenkrechten schneiden sich: vielleicht in einem, vielleicht in drei verschiedenen Punkten (Grundvoraussetzung)
- (b) Es existiert ein Schnittpunkt von zwei Mittelsenkrechten
- (I) Alle Punkte
haben selben Abstand zu
und
(Mittelsenkrechtenkriterium)
- (II) Alle Punkte
haben selben Abstand zu
und
(Mittelsenkrechtenkriterium)
- (III)
und
schneiden sich in
(Existenz des Schnittpunktes nach Teil (a) bewiesen)
- (IV) Da
gilt
und
- (I) Alle Punkte
- (b) Es existiert ein Schnittpunkt von zwei Mittelsenkrechten
- (c) Es existiert ein Schnittpunkt der beiden Mittelsenkrechten aus (b) und der dritten Mittelsenkrechten
- (I) Es gilt
und
nach (b)(IV)
- (II) Es gilt auch
nach (I) (Transitivität, Umformung)
- (III) Es gilt somit auch:
(Mittelsenkrechtenkriterium)
- (I) Es gilt
- (c) Es existiert ein Schnittpunkt der beiden Mittelsenkrechten aus (b) und der dritten Mittelsenkrechten
Es existiert genau ein Schnittpunkt!
Muss man die Eindeutigkeit jetzt noch beweisen? Und wenn nicht: warum nicht?
Noch eine Bonus-Frage: Wieso ist der Schnittpunkt der Mittelsenkrechten der Mittelpunkt des Umkreises des Dreiecks? --Heinzvaneugen 15:00, 22. Jul. 2010 (UTC)
Kommentar --Löwenzahn 15:14, 22. Jul. 2010 (UTC)
Du hast die Eindeutigkeit (m.E.) durch die "Eindeutigkeit der Mittelsenkrechten" und nach Satz I/1 (Es seien g und h zwei verschiedene Geraden. Wenn g und h nicht identisch sind, so haben sie höchstens einen Punkt gemeinsam.) gegeben. Ich denke, dass man das noch als Kommentar darunter schreiben sollte.