Innenwinkelsatz für Dreiecke und starker Außenwinkelsatz WS 11/12
Aus Geometrie-Wiki
Inhaltsverzeichnis |
"Der Abreißbeweis"
Diskutieren Sie Sinn und Unsinn des folgenden "Beweises":
http://www.ph-heidelberg.de/wp/gieding/Lehre/didaktik_5_8/flash/innenwinkelsumme.swf
Ein echter Beweis
Satz XII.4: (Innenwinkelsatz für Dreiecke)
- Es sei ein Dreieck mit den Innenwinkeln , und .
Es gilt .
- Es sei ein Dreieck mit den Innenwinkeln , und .
Beweis von Satz XII.4 (Innenwinkelsatz für Dreiecke)
Übungsaufgabe
Satz XII.5: (Starker Außenwinkelsatz)
- Jeder Außenwinkel eines Dreiecks ist so groß, wie die Summe der größen der beiden nicht anliegenden Innenwinkel dieses Dreiecks.
Beweis von Satz XII.5: (Starker Außenwinkelsatz)
Übungsaufgabe